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Yang Xu
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Major Department: Industrial and Systems Engineering

In this dissertation we develop theories and algorithms for some multifacility location

problems which, as a class, are to determine the locations, on a transportation network, of a set of

functionally distinct facilities, to minimize an objective function of demand-point to facility

distances and inter-facility distances.

Unlike the cases when the network is a tree or the distances are rectilinear, all the problems

are provably difficult when the network contains cycles. Thus, we focus on two special cyclic

networks — the multiblock network and the grid network— which are, respectively, generali-

zations of a tree network and a rectilinear grid.

For the multimedian problem on a multiblock network, we develop a method that, in

polynomial time, localizes every new facility to either a vertex or a block. With the localization,

the problem can be decomposed.

For the multimedian problem on a grid network, we develop a branch and bound algorithm

with the rectilinear multimedian problem as a lower bounding problem. We also develop a

polynomial-time algorithm for em approximation. Computational experiments are conducted.

Finally, we propose a branch and bound approach for a class of multifacility location

problems on general cyclic networks, and a special approach for the same problems on grid

V



networks. With polytope-type solution subsets and with piecewise linear and convex

underestimates for the shortest distances, the lower bounding problems are convex if the problem

objective function is a convex function of distances; and the lower bounding problems are linear

in many special cases. The distance underestimates approach the originals as the level of

decomposition increases. When the network is a grid network, we derive specialized lower

bounding problems with substantially improved quality.
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CHAPTER 1

INTRODUCTION

Location decisions involve various spatial resource allocation problems in which a set of

existing facilities is spatially distributed over a region. One needs to determine the locations of

new facilities in the area and/or to allocate existing facilities to new facilities to optimize some

objective. The objective is usually a real-valued function of distances between pairs of

existing/new facilities (Type I distances) and/or between pairs of new facilities (Typg H

distances) . A network location problem occurs when the point to point traffic must follow a pre-

specified network (e.g. a road network). Every existing facility is a vertex in the network and the

new facility locations must be on the network. Usually, the distances involved in the objective

are the network shortest path distances .

In this dissertation, we consider network multifacilitv location problems with mutual.

communication (multifacility problems for short), which are to detenmne the locations of a set of

distinct new facilities with the objective functions depending on both types of distances. The

applications of multifacility problems involve those which consider the locations of different

types of new facilities (especially, new facilities with hierarchies). The examples include

determining the locations of some function-specified subsidiaries of a company (warehouses and

plants, work stations on a workshop floor); determining the locations of some service centers

(hospitals, clinics, ambulance stations); the locations of computing resources and information

storage units on a distributed computer network. Some multifacility location problems are also

closely related to facility layout problems.

The focus of this dissertation is on two particular problems— the multimedian problem

(the minisum multifacilitv problem or the p-median problem with mutual communicatIQQ) and the

1
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miilticenter problem (the minmax multifacilitv problem or the p-center problem with mutual

communication) . Both problems are NP-hard on general networks and have known polynomial-

time algorithms only when the underlying networks are trees. Our objective is to design

improved algorithms for both problems when defined on networks more general than tree

networks and gain insight for the problems under the most general assumptions.

1.1. Definitions and Notation

In this section we will define the multimedian problem and the multicenter problem, and

introduce notation.

An undirected network G = (V, E) has a vertex set V = { Vj, . . Vj„} and an edge set E =

{(vj, Vj) : for some Vj, Vj in V}. Each edge has a positive length. We always assume that G is

connected. If a point lies in the interior of an edge it is an interior point and is represented by its

distances to the vertices which are the end points of the edge containing the interior point. For

any two points x, y of G, we denote d(x, y) as the shortest distance between them. It is well-

known that d(. , .) is a metric having the following properties: (i) (nonnegativity) d(x, y) > 0, with

d(x, y) = 0 if and only if x = y; (ii) (symmetry) d(x, y) = d(y, x); (iii) (triangle inequality) d(x, y) <

d(x, z) + d(z, y) for any z g G. A network is a tree network if it is connected and has no cycles.

For a more rigorous definition of a network, see Dearing et al. (1976).

Unless otherwise stated, we always assume that a multifacility problem has m existing

facilities and n new facilities. Let J = { 1, ..., n} be the index set of new facilities. In a location

network, each vertex v^ is an existing facility with nonnegative weight wy, i=l,...,m, j
= l,...,

n. There is also a nonnegative weight vjj^ for new facilities j and k where Vjj^ = 0 if j
= k, and Vjj^ =

Vj^j for all j and k. A weight describes the interaction intensity between the associated pair of

facilities.

A multimedian problem is defined as the following:

MMP: Minimize f(X) = I f(x:) + f^N(X),
X G G^ j=i
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where G" is the n-fold Cartesian product of G, fj(Xj) = X {wy d(Vj, Xj) : i = 1, m} j g J, and

fNN(X) = X I {Vjk d(xj, xi,) : 1 < j < k < n }.

The multicenter problem differs from the multimedian problem in the objective:

MCP: Minimize f(X) = max{ max{f:(Xj): j g J}, fNN(X) }, where
X G G^

fj(Xj) = max{wyd(Vi, Xj)l i = 1, m}, j g J and now f|sjN(X) = max{Vjj^d(xj, Xj^)l for all j
< k}.

For completeness, we include, in both problems, the single facility case (n = 1) where there

is no fNN(X) term. When n = 1, MMP and MCP are, respectively, the well-known 1 -median

problem and 1 -center problem (Hakimi 1964). In both MMP and MCP, it is the interaction terms

(Vjj^d(Xj, Xj^)) that bind the problem together. Let Gj = (J, Ej) be the interaction graph such that an

edge (j, k) is in Ej if and only if Vjj^ > 0. We always assume that Gj is connected since otherwise

the corresponding problem can be decomposed into several independent problems, each of which

corresponds to a component of Gj.

1.2 Literature Review

In this section, we give a general literature review of the topics related to this dissertation.

In the first subsection, we review past work on multifacility location problems. In the second

subsection, we review the literature of location problems on special cyclic networks.

1.2.1 A General Review

After nearly 30 years of active development, location theory has grown into many

branches. A recent survey (Brandeau and Chiu, 1989) lists 58 major location problems. Here,

we concentrate only on the literature on multifacility location problems. For a general survey one

can refer to the following: Francis et al. (1983), Tansel et al. (1983a), Krarup and Pruzan (1979,

1983), Aikens (1985), Brandeau and Chiu (1989). Furthermore, there are text books by Francis,

McGinnis, and White (1992), by Handler and Mirchandani (1979), and by Love et al. (1988). A

recent book edited by Mirchandani and Francis (1990) discusses discrete location problems. For

some location-related research in disciplines other than operations research, one can refer to the

book edited by Ghosh and Rushton (1987).
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The planar multifacility location problem developed much earlier than its network

counterpart and has attracted many researchers. Most of the research on the planar multifacility

location problem concentrates on problems with Euclidean distances (Rado, 1988) or rectilinear

distances (Francis, McGinnis, and White, 1992). Also, there is an extensive discussion on

problems with Ip distances (Hansen and Thisse, 1983; Idrissi et al. 1987). In this proposal, our

main interest is the rectilinear multifacility location problem, due to its relation to grid networks .

If the distances are rectilinear distances in a multimedian problem, the problem is called the

rectilinear multimedian problem . A rectilinear multimedian problem can be decomposed into two

independent subproblems, each of which is a multimedian problem defined on a path (a special

tree network). All the known algorithms use this fact. Cabot et al. (1970) found an equivalent

linear program for each subproblem and solved the dual of the linear program as a minimal cost

flow problem. Picard and Ratliff (1978) gave a direct search algorithm of O(mn^) for each of the

subproblems. The algorithm solves a minimum-cut problem on each edge of the path where the

cut gives an optimal partition of new facilities over the two subtrees obtained by removing the

edge. Based on a different point of view, Kolen (1981) gave a direct search algorithm which is

equivalent to Picard and Ratliffs algorithm. Both of these direct search algorithms can be easily

extended to the multimedian problem on tree networks and Kolen (1986) gave an explicit

description of such an algorithm. For other early work on the rectilinear multimedian problem,

see Pritsker and Ghare (1970), Rao (1973), Juel and Love (1976) and Sherali and Shetty (1978).

No known method exists to decompose the rectilinear multicenter problem directly.

Instead, there is a one-one mapping between rectilinear distance space and Tchbyshev distance

space; the multicenter problem defined with Tchbyshev distance can be decomposed into two

independent subproblems. With this decomposition, Dearing and Francis (1974) formulated the

subproblems as linear programming problems and solved the duals as special network flow

problems. Similar to the rectilinear multimedian problem, each subproblem of the rectilinear

multicenter problem can be viewed as a multicenter problem on a path. Hence, the solution

techniques on a tree network can be applied here.
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Multimedian and multicenter network location problems are defined by Dealing et al.

(1976) under the presence of distance constraints. Since then, most of the research has

concentrated on the problems defined on tree networks due to the fact that each problem is

convex if and only if the network is a tree (Dearing et al. 1976), and each problem is NP-hard on

general cyclic networks (Kolen 1982).

Research on the 1 -median problem and the 1 -center problem is vast. For the 1 -median

problem, Hakimi (1964) showed that there is an optimal solution at a vertex (Vertex Optimality

Property). For the problem on a tree network, Goldman (1971) and Lo-Keng Hua et al. (1962)

independently gave a tree trimming algorithm of 0(n), which is based on a "Majority

Localization Condition" (Goldman and Witzgall, 1970).

For the 1 -center problem on a general network, Hakimi (1964) showed that the candidates

for optimal solutions can be a finite set, namely the set of vertices and bottleneck intersection

points . Based on this, Kariv and Hakimi (1979b) gave an 0(IEInlog(n)) algorithm. For the

unweighted 1 -center problem on a tree network, Goldman (1972) gave an O(n^) algorithm using

the fact that at any vertex one can always tell which induced subtree contains an optimal solution.

Dearing and Francis (1974) showed that max{WjWjd(Vj, Vj)/(Wj+Wj): 1 <i<j<m} is a lower

bound to the 1 -center problem when the network is cyclic and the bound is tight when the

network is a tree. Kariv and Hakimi (1979b) gave an 0(nlog(n)) algorithm for the tree 1 -center

problem.

The multimedian problem also has a vertex optimality property (Tansel et al., 1983b).

Therefore, by removing an edge from a tree network, there must be an optimal partition of the

new facilities over the two resulting subtrees. This partition is independent of the length of the

edge removed (Kolen 1981). For the multimedian problem on a tree network (tree multimedian),

Kolen (1981) gave a direct search algorithm similar to the one given by Picard and Ratliff (1978).

The algorithm uses the convexity of the tree multimedian problem so that (i) a locally optimal

solution is a globally optimal solution, and (ii) one can determine an optimal direction locally. It

selects an arbitrary edge and solves a minimum cut problem on a flow network with n+2 nodes
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to determine a globally optimal partition of new facilities on the two subtrees obtained by

removing the edge. The problem can then be decomposed into two subproblems. The algorithm

continues to decompose until every subtree is a single vertex. The minimum cut set problem can

be solved by Karzanov's maximum flow algorithm (1974) in 0(n3), and the direct search

algorithm solves a minimum-cut set problem on each of the edges in the tree, so that the direct

search algorithm is 0(mn3). The structure of the flow graph is also very important to the

complexity of the multimedian problem. Chhajed and Lowe (1992) developed a polynomial-time

algorithm when the flow graph is a series-parallel graph.

The results by Francis et al. (1978) and later the refined results by Tansel et al. (1980) and

Erkut et al. (1989) represent another approach toward the multifacility problems on tree networks,

especially under *^he presence of distance constraints. A network distance constraints problem is

to find a solution for inequality system (DC); D(X) < b, which can be written explicitly as

When G is a tree network T, Francis et al. (1978) gave the following results. Using the

Neighborhood Intersection Procedure (NIP), one can construct a set of neighborhoods on T,

d(a(j), Xj) < Cj, j
= 1, ..., n, which is equivalent to (1.1). With the Sequential Location Procedure

(SLP) . of 0(m(m+n)), one can either construct a feasible solution X on T or prove that D(X) < b

is inconsistent. An weight graph A^(b, c) consisting ofm EF (existing facility) nodes EFj, i = 1

,

. . ., m and n NF (new facility) nodes NFj, j
= 1, • • •, n is used. An edge (EFj, NFj) ((NFj, NFj^)) is

in N(b, c) with length Cy (bj^) if Cy > 0 (bji^ > 0). A path in A^(b, c) with two EF end nodes and

only NF intermediate nodes is called a direct-path . Let L(EFj, EFj:b, c) denote the shortest direct-

path length in A^(b, c) between EF, and EFj. Then, (DC) is known to be consistent if and only if

the following system is consistent:

d(Vj, Xj) < Cy, i = 1, ...,m,j = 1, ...,n,

d(xj, x,^) < bjij, 1 < j < k < n. ( 1 .2)

( 1 . 1 )

(1.3)
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The Separation Conditions (1.3) are equivalent to a linear inequality system A Z > d with A a

direct-path vs. edge incidence matrix of MZ), d a distance vector with entries d(Vj, Vj)'s, and Z a

vector with each entry some by or Cji^.

For a tree network T, Erkut et al. (1989) discussed a general constrained multifacility

problem with monotonic nondecreasing objective function. It can be formulated as;

Pj: Minimize {bo I X e T, 4(Z) < b^, k = 0, 1, ..., p, D(X) < Z, Z > 0}.

From the Separation Conditions, D(X) < Z is equivalent to A Z > d. Thus, to find an optimal

vector Z*, one can solve problem

P2 : Minimize (bo Ifk(Z) < bjj, k = 0, . . ., p, A Z > d, Z > 0}

With an optimal Z*, one can use algorithm SLP to find a corresponding optimal solution X* on T

by solving D(X*) < Z*.

If the functions fk(Z) are piecewise linear and non-decreasing, Erkut et al. (1989) showed

that P2 is equivalent to a linear programming problem, say LP2 , containing A Z > d as a major

part of constraints, and that the dual of LP2 can be solved with an efficient column pricing

procedure based on SLP. Our multimedian and multicenter problems are two special problems.

Writing MMP in a vector form, we have

MMP: minimize (w^Z I X e T, D(X) < Z, Z < 0 }

.

The corresponding linear program is

MMPl: minimize (w^Z I A Z > d, Z > 0}.

For MCP, one can determine the optimal objective value z* directly instead of by solving

the corresponding linear programming problem (Francis et al. 1978). Let M be a large constant.

Let

Zjj(E, N) =
z/Wjj, if Wy > 0,

. M, o/w
i = 1, ..., m, j

= 1, ..., n. Zjk(N, N) =
z/Vjk, if Vjk > 0

• l<j<k<n,
I M, o/w.

and let

b(z) = (zii(E, N) Zmn(E, N), Zj 2(N, N), ..., z„.i„(N, N)),

A vector form of a MCP is MCP: minimize (z I X e T, D(X) < b(z), z > 0}.

/
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Erkut et al. (1992) considered finding z* more efficiently through bisection search. Tansel

et al. (1980) showed that the separation conditions provide more information. For a distance

constraint system D(X) < b, a direct path P(EFj, EFj) in N(h) is tight if LP(EFp EFjtb) = d(Vj, Vj).

They showed that for any NF node in a tight path, its corresponding new facility is uniquely

located using the solutions satisfying D(X) < b. Thus, in MCP, z is the optimal objective function

value if and only if A^(b(z)) contains at least one tight direct path.

Finally in this subsection we discuss research on some cyclic network multifacility location

problems. Due to the complexity of a cyclic network, both multimedian and multicenter

problems become difficult. Dearing et al. (1976) pointed out that the tractability of most of the

tree network location problems is partly due to the fact that on a tree network the type I and type

II distances are all convex. It is well-known that in a cyclic network, the type I distance is

piecewise concave on an edge. Hooker (1991) showed that in a cyclic network, the distance

d(Xj, Xj^), for any j k, is piecewise concave if Xj and Xj^ are in two different edges, and can be

neither convexmor concave if Xj and Xj^ are on the same edge. Francis et al. (1978) showed that

the separation conditions are only necessary conditions for a constraint system D(X) < b to be

consistent if the network is cyclic. That is

D(X) < b is feasible => L(EFi, EFjib) > d(vj, vj), 1 < i < j
< m <=> A Z > d is feasible.

Thus, for the multifacility problem Pj above, the corresponding P2 is a lower bounding problem

(Erkut et al., 1989). Furthermore, even if one manages to obtain an optimal Z* for Pj, it can be

difficult to determine an optimal X’^ since Kolen (1982) showed that the distance constraint

problem is NP-hard on cyclic networks. On the other hand, let Pj' be a problem having the same

set of data as Pj but defined on some spanning tree of G, and let P2
' be the problem by replacing

D(X) < Z in with A Z > dj, where dj is a vector of the distances between vertices on the

spanning tree. Problem P2
’ gives an optimal objective value of which is an upper bound on P^.

Erkut et al. (1988) report some experimental results on the quality of the lower bounds and upper

bounds obtained in this way for the multimedian problem. It is worth noting that problem P2

provides the only known nontrivial lower bound for multimedian and multicenter problems.
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Realizing that a network edge can be decomposed into segments on which objective

functions are convex for a class of location problems, Hooker (1986, 1989) gave algorithms for

location problems with convex objective functions of type I distances. In the algorithms,

subproblems are solved with respect to these segments.

L2r2 Network Location Problems on Some Special Cyclic Networks

The fact that there are efficient algorithms for most of the tree network location problems

and that most of the network location problems are NP-hard on general cyclic networks motivates

the study of location problems defined on special cyclic networks. By introducing the concept of

a and a gated subnetwork . Goldman and Witzgall (1970), and Goldman (1971) may be

among the earliest to identify the reason why location problems on tree networks are so tractable.

For a given subnetwork G’ of G, let u be a point not in G’. Then a point g(u) in G' is the gate

jjQinl of ii if and only if for every point (or vertex) u' in G', g(u) is in every shortest path

connecting points u and u’ ( i.e. d(u, u’) = d(u, g(u)) + d(g(u), u') ). A subnetwork G' is gated if

for every point u (or vertex) not in G’ there exists a unique gate point g(u) in G’. The uniqueness

is important since it enables one to consider G' as an aggregated unit in some location problems.

Goldman and Witzgall showed that for the 1 -median problem, if the total weight of a gated

subnetwork G is at least half of the total weight of G, then G’ contains an optimal location of the

new facility. Note that any subtree of a tree network is gated; Goldman’s tree trimming

algorithm for the 1 -median problem is based on this property. A subnetwork in a general cyclic

network is very likely not gated (i.e. from some point outside the subnetwork, there are different

gates to enter the subnetwork in order to reach different parts of the subnetwork via shortest

routes.). Thus, one naturally intends to study location problems on special cyclic networks with

easily identifiable gated subnetworks.

In this dissertation, we will study two special cyclic networks — the multiblock network and

the grid netwQck. In the following, we define these two networks and discuss the related

literature.
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i.2.2.1. Location Problems on Multiblock Networks

First, we give the definition of a multiblock network. A outpoint vertex of a graph is a one

whose removal, together with the incident edges, increases the number of components. A graph

is nonseparable if it is nontrivial, connected, and has no cutpoint vertices. A block is a maximal

nonseparable subgraph (Harary 1969). A multiblock graph contains more than one block (has at

least one cutpoint vertex). A network with a multiblock underlying graph is a multiblock

network . Figure 1.1 shows a multiblock network with 3 cutpoint vertices and 4 blocks.

For the 1 -median problem, by studying the weights of gated subnetworks, Chen et al.

(1985) gave a polynomial time algorithm that either finds a vertex 1-median or localizes all the 1-

medians to a single block. For the 1-center problem, Chen et al. (1988) gave an algorithm that

gives similar localization results. Chang and Nemhauser (1982) considered a R-Domination

problem on a multiblock graph. Gurevich et al. (1984) considered an r-covering problem on a

multiblock network. For the r-covering problem, they gave an algorithm with complexity

depending on the sizes of the blocks. Kim et al. (1989) considered a problem of locating a

covering-type minimal-length-subgraph on a multiblock network. Based on that a 3-cactus

network (a network with the underlying graph consisting of bi-connected cycles of three vertices)

can be transformed into a tree network without changing the shortest distance between any pair of

vertices, Kincaid and Lowe (1990) considered the 1 -center problem on a 3-cactus network.

Figure 1.1 A Multi-Block Network
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1 .2 .2 .2 . Location Problems on Grid Networks

The grid network is another kind of cyclic network with easily identifiable gated

subnetworks. To our knowledge, there is no existing result for any location problem on a grid

network that exploit the grid structure.

Now, we define grid networks. In E^, the rectilinear distance between any two points u
,

=

(u^i, Uyi), U2 = (u^2* Uy2) r(u,, U2) = lu^j - Ux2 l + lUyj - Uy2 l. A rectilinear grid in consists of a

set of parallel vertical lines and a set of parallel horizontal lines with a well-defined spacing. All

the vertical lines (horizontal lines) are of the same length. Thus, a grid encloses a rectangular

area in E^. The intersection of a vertical line and a horizontal line defines an intersection point .

Two adjacent intersections define a grid edge. Two adjacent horizontal (vertical) lines define a

row tcolumn') . The intersection of a row and a column defines a cell . Figure 1 .2 gives an

example of a grid.

A grid must be treated as a network if the travel between any two points on the grid must be

along the grid lines. This differentiates the grid network distances and the corresponding

rectilinear distances. For any two points x and y, any shortest grid path connecting them travels

in directions alternatively parallel to one or the other of the two axes in E^. Points Uj and U2 are

semi-antipodal to each other if they are both interior points of two different grid edges in the

same row or column. The relation between the grid network distance dfuj, U2) and the rectilinear

distance rfuj, U2) is

d(ui, U2) = r(ui, U2) + 5(u,, U2),

Figure 1 .2 A Grid Network
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where 5{ui, U2) ^ 0 with 5(ui, U2) > 0 if and only if points U[ and U2 are semi-antipodal to each

other. Thus, if L* denote the maximum of the grid edge lengths, then for any two points we have

r(ui, U2) < d(u2, U2) < r(U], U2) + L*.

A network is a grid network if one can find a grid embedding in by adding finitely many

artificial vertices as intersections in the grid. For example, a single cycle network can have a grid

embedding in by adding at most three artificial vertices as intersections. We denote the grid

embedding of a network as Ng. A vertex that is not an intersection is called an interior vertex . A

grid network Ng may exist in reality (e.g. the road network of a city) in which case there are no

artificial intersections. With Ng as a grid, all the definitions and claims about a grid are valid

here. Grid Ng encloses a rectangular area in E^, which we denote as Np

We now give the motivation for studying grid networks. Theoretically, a grid network is

cyclic. Tamir (1993) showed that a special case of the grid network multimedian problem, when

the network is a single cycle with three nodes, is strongly NP-hard. Yet, it is "close" to a

rectilinear grid on which some multifacility problems can be solved. We can use the

corresponding rectilinear problem as an approximation. On the other hand, the regularity of a

grid network may enable us to do some analysis which is otherwise impossible on a general

cyclic network. In applications, there are some cases, such as traveling in city streets, along the

aisles of a workshop or a warehouse, or along an AGV guide path network, where the travel

pattern is alternatively along the two axes of E^. People generally use rectilinear distances to

approximate the real distances. It is interesting to note that, to date, researchers seem to have just

accepted rectilinear distance as a satisfactory approximation to grid network distcuice. The two

distances are not the same, and the quality of the approximation has not been studied. We show

that there are cases where the approximations are poor. This motivates studying location

problems directly defined on grid networks. There is little study of grid network location

problems as such, although we believe these to be an important, and reasonably tractable, class of

cyclic network location problems.
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In the following, we discuss literature related to grid networks. Larson and Sadiq (1983),

and Batta et al. (1989) considered the p-median problem with rectilinear distances in the presence

of barriers (areas which blocking travels) and convex forbidden regions (areas in which locating

new facilities is not allowed). In Batta et al. (1989), they conclude that, with barriers and

forbidden regions, the properties of the problem resemble the same kind of problem defined on a

general cyclic network because of the loss of the gated subnetwork property (in their term, the

single assignment property). Batta et al. (1989) and Batta and Chiu (1989) noticed that there are

some relations between the rectilinear metric and the network metric. Bandelt (1989) studied the

1 -median problem on a median network which, in fact, is a multidimensional rectilinear grid.

Based on the gated subnetwork structure, he concluded that the set of 1 -medians is a connected

subnetwork and every local 1-median is also a global 1-median. Egbelu (1982), Tansel and Kiran

(1988), Kiran and Tansel (1989), Goetz and Egbelu (1989) discussed problems of locating

loading/unloading points in an AGV guide path network.

There is also some research in graph theory which is related to location problems on special

cyclic networks (Proskurowski, 1980a,b; Hedetniemi et al., 1982, 1986; and Nieminen, 1988).

1.3 Overview

In Chapter 2, we consider the multimedian problem on a multiblock network. We obtain a

localization result that localizes each new facility either to a block or a vertex. With the

localization result, the problem can then be decomposed into smaller independent subproblems

each of which is defined on a single block. These subproblems can be solved by branch and

bound with the vertex-optimality property.

In Chapter 3, we study the multimedian problem on a grid network. We give some

analytical results on the relations between the problem and a lower bounding problem — the

rectilinear multimedian problem. We also give a dominance relation for the multimedian

problem on a grid network. Using this dominance relation, we find a polynomial-time algorithm
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that solves an approximation. We develop a branch and bound algorithm and give some

computational results.

In Chapter 4, we study a general cyclic network, multifacility problem with a convex

function of distances. Based on some properties of distance functions, we propose using some

piecewise linear and convex functions as their underestimates. We define a special type of

solution subset which can be represented as a simple polytope in Euclidian space. For the

subproblems on such a subset, we give various lower bounding techniques. We show that when

the network is a grid network, we can make substantial improvement on the lower bounds,

because the piecewise linear and convex underestimates of grid network distances are more

useful and more available.

In Chapter 5, we give conclusion and future research remarks.



CHAPTER 2

THE MULTIMEDIAN PROBLEM ON A MULTIBLOCK NETWORK

In this chapter, we consider the multimedian problem P defined on a multiblock network G.

From Chapter 1, a block of G can be an arbitrary cyclic network. Thus, the multimedian problem

on a multiblock network is NP-Complete. Yet, by solving, in polynomial time, another

multimedian problem on a tree — a blocking graph , we can localize every new facility to either a

vertex or a block. We then decompose the problem into independent multimedian problems, each

of which corresponds to a localizing block.

This chapter is organized as follows. In Section 1 , after introducing the necessary notation,

we give our major localization result without proof and illustrate how to decompose the problem

based on the localization. Section 2 discusses the insight for the localization result. Section 3

gives the proof of our main localization result. Because of the Vertex Optimality Property for the

network multimedian problem, we only consider vertex solutions from now on in this chapter.

2.1 Localization and Decomposition

Localizing an optimal solution for a 1-median problem is considered by Goldman and

Witzgall (1970), Goldman (1971), and Chen et al. (1985), with subsequent extensions by Love

and Juel (1980) and Lefebvre et al. (1991) to versions of planar multimedian problems. Our

result generalizes the result of Chen et al. to the multimedian problem.

First of all, we introduce the blocking graph . For a multiblock network G, its blocking

graph BG is defined as follows. For every vertex v of G there is a vertex node cv in BG called

the copy of v; for every block B in G, there is a block node CB in BG called the copy of B. An

edge (cv, CB) is in BG if and only if v e B. For convenience, the length of each edge in BG is

one. It is known that BG is a tree ifG is connected (Rosenstiel, Fiksel, and Holliger, 1972).

Figure 2.1a gives a multiblock network with three blocks and two cut-points. Figure 2.1b is the

15
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Figure 2.1 A Multi-Block Network and Its Blocking Graph

corresponding blocking graph. There is an 0(m2) algorithm (Aho, Hopcroft, and Ullman, 1976)

to construct the blocking graph of a network with m vertices.

For problem P, assigning every vertex node in BG the weights associated with the vertex in

G and assigning zero weights to all the block nodes, we define a tree-multimedian problem on

BG as follows.

BP: Minimize F(Z) = ^ ^ w:; d(cv:, Z;) + E Z Vji, d(z:, Zu).

ZeBG i=l j=l
^ ’

l<j<kSn^
^

Note that since the weights for the block-nodes are zero, they do not appear in the above

expression. As with P, we are only interested in node solutions of BP.

Now we give our main localization result. Let Z be a solution to BP. In any given solution

U to P, a new facility, say new facility j, is said to conform to Z if Uj = v^ when Zj = cv^ for any s,

and Uj e B^ when Zj = CBq for any q. A solution U conforms to Z if every new facility in the

solution conforms to Z.
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Theorem 1 . Let Z* be an optimal solution to BP. There exists a vertex optimal solution U* that

conforms to Z*.

There is an algorithm which solves a tree-multimedian problem in the order of 0(nui3)

(Kolen, 1982). Thus, if there are k blocks in a multiblock network, the localization conclusion

needs 0((m+k)n3) computation. We remark, since the localization conclusion of Theorem 1 is

obtained by solving BP on the blocking graph, that no information about edge lengths of the

network G is used. Likewise, the only information about each block that is used is which vertices

are in the block, and which vertices of the block are cutpoints. Therefore, for any two

multimedian problems with the same BG and the same induced block problem, the localization

conclusions would be the same. In this sense, the localization information applies to a family of

multimedian problems, and not just the specific problem of interest. Alternatively, we can view

the blocking graph as being an aggregation of the original graph G, since it has a similar but

simpler structure. Thus we can view BP as an approximation to P. Information we obtain about

an optimal solution to BP will apply, in some sense, to P as well.

With Theorem 1, we now show how to decompose P. Without loss of generality, we

assume that there is an optimal solution Z* = (cvj, ..., cVp, CB(p+i), ..., CB(„)). From Theorem 1,

there exists an optimal solution to P with new facilities 1 p vertex-localized to vertices Vj, ...,

Vp and new facilities p+1, ..., n block-localized to blocks B(p+j), ..., B(„). Decomposing P can be

done in the following two steps.

(a) Removing Vertex-localized New Facilities

With new facility 1 localized to vertex Vj, the terms in the objective function of P involving

new facility 1 are constant terms Wiid(Vj, Vj), i = 1, ..., m and variable terms Vjijd(vj, U|^), k = 2, ...,

n. Each term Vji^d(vj, uj^) can be added to term Wjijd(v,, U|^) to create a new term wuj'd(vi, Uj^)

where Wji^’ = Wjj^ + Vji^, k = 2, ..., n. With U\{ 1 } = {U2, .... u^}, Cj = S{ wjidCVj, Vj)! i = 1, ..., m},

and h(U\{ 1 }) the objective function of the multimedian which only involves the last n-1 new

facilities, we have

f(U) = h(U\{ 1 }) + Cj, for any U that conforms to Z*. (2 . 1 )
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By removing all the vertex-localized new facilities one at a time in this way, we obtain

f(U) = h(Up^.|, u^) -I- C, for any U that conforms to Z*, (2.2)

where C is a constant. Thus, the multimedian problem equivalent to P is

P': Minimize {h(Up+[, ..., Uj„) I U: € B^, j = p+1, ..., n}.

(b) Decomposing P

Decomposing P' is based on the observation that cutpoint vertices serve the unique linkage

for the "communication" between any two facilities in two different blocks. For a new facility j

localized to a block B and a vertex v not in B, the unique closest point in B to v is a cutpoint

vertex v' of B, such that

d(v, Uj) = d(Uj, v') + d(v’, v). (2.3)

For two new facilities j and k localized to two different blocks, say Bj and B2, there exists a

unique cutpoint vertex v' in Bj and a unique cutpoint vertex v" in B2 such that

d(Uj, Ujt) = d(Uj, v') + d(v', v") -I- d(v", u^). (2.4)

If B
J
and B2 share a common vertex v, then v' = v" = v. Now, replace every term in h of P,

which satisfies the conditions of equation (2.3) or (2.4) with the corresponding right hand side,

and rearrange the terms by letting f[i](U(j)) be the sum of weighted distances involving existing

and new facilities in the same localizing block i, and letting C" be the sum of constant terms. We

then have

h(Up+i, ..., u„) = I{f[i](U[i]) : i = p+1 n} + C".

Combining (2.2) with (2.5), we have

(2.5)

f(U) = I{f[i](U[i]): i = p+1, ..., n} + C + C". (2.6)

Minimizing f(U) subject to U conforming to Z* can then be done by minimizing each fp](U(j])

subject to € B(i), i = p+1, ..., n.

Example 2.

1

. For the network G shown in Figure 2.1a, let each edge length be 10 except for an

edge length of 20 for edge (V3, V4). Define an instance, P2, of the multimedian problem with 2

new facilities on this network with weights given in Table 2.1.
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Table 2. 1 . Weight Data for Example 2. 1

.

Wij 1 2 3 4 5 6

1 2 10 3 2 2 2

2 3 1 1 1 9 1

Solution Z* = (CBj, CV5) is an optimal solution to BP2 on the BG shown in Fig. 2.1b. From

Theorem 1, there exists an optimal solution U* to P2 with U2* = V5 and Uj* 6 Bj. With new

facility 2 fixed at V5, we can remove new facility 2 from further consideration by updating the

weights of V5; W51' = W5J + Vj2. Now f(U) = h(ui) + Cj where h( ) is the sum of all the terms of

f(U) not involving new facility 2, Cj = Z{Wi2d(vj, V5): i = 1, ..., 6} = 210, and Wj5 is updated.

Now with Uj € Bj, we have d(vj, uj) = d(Vj, V3) + d(v3, Uj) for i = 4, 5, and 6. Thus,

3 6

h(Ui) =I Wiid(Vj, Uj) + I Wji [d(Vj, V3) + d(v3, Uj)].
1=1 1=4

6 6

Let w,i' = w„, W21' = W21, W31' = [W31 + 1 Wji], C2 = 1 Wj, d(Vi, V3).
1=4 1=4

3

It is easy to verify that hfuj) = Z Wji'd(Vj, U3) + C2. Thus, problem P2 is reduced to solving a
i=l

1 -median problem on block Bj.

It is still an open question as to how to solve a multimedian problem on a cyclic network

which is a single block. There are two cases for which P can be easily solved.

Case 1 . Many new facilities are vertex-localized, and each localizing block has few vertices.

Case 2 . Each localizing block contains few localized new facilities.

2.2 The Tree-Like Structure

In this section, we will provide some insight for our localization result by drawing

analogies from the tree multimedian problem. We also introduce necessary notation for the

proofs of the main localization result in the next section.

Given any vertex v and any block B such that v e B, network G will be separated into two

connected components when one removes all the edges in B incident to v. We denote the

component which contains vertex v as G(v, B) and the other as G(B, v). We call this pair the

gated pair (defined bv v and B1 (gated pair for short) since vertex v is a gate vertex for both

components, following Goldman and Witzgall (1970). Figure 2.2 gives an example of a gated
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pair defined by block B 3
and cut-point vertex V4 in Figure 2 . 1 a. For the trivial case where v is not

a cutpoint vertex, G(v, B) = { v }

.

o

o
G(B„ \4 )

G(CV4 , CBa)

CB)
I

C03

O
G(CB 3 . CV4 )

Figure 2.2 A Gated Pair and Its Copy

In the terminology of Goldman and Witzgall (1970), the two components G(v, B) and

G(B, v) are gated subnetworks with gate point v, so that d(x, y) = d(x, v) + d(v, y), for any x e

G(v, B) and y e G(B, v). Breaking down distance function d(x, y) involving variables x and y in

the two components respectively into two distance functions d(x, v) and d(v, y) each only

involves one variable in the respective locality, it indicates that the internal structure in G(B, v)

(G(v, B)) has no effect on the objective function value when one only changes the new facility

locations in G(v, B) (G(B, v)). This homogeneity effect on the distances is the basis for the

results of the tree-multimedian problem (Goldman and Witzgall, 1970; Kolen, 1986) as well as

for our localization result.
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For a tree network, this homogeneity effect can be seen from the following two properties.

For a tree network T, let (v^, v^) be an arbitrary edge and (T^, T^) be the subtree pair obtained by

removing edge (v^, Vf). For an instance of multimedian problem on T, a bi-partition (Jg*, J^'') of

the new facility indices over edge (v^, v^) is an optimal one, if there is an optimal solution with the

new facilities in (It"') located in (Tj).

Property 2.1 . (Kolen, 1986) A bi-partition ]*) over any given (v^, vj is optimal if and only

if, by initially locating all the new facilities on v^, moving new facilities in to Vj decreases the

objective function value the most among all the choices of subsets of new facilities to move.

In the following, we give a necessary condition for an optimal bi-partition. This property

tells when a movement of some new facilities to an adjacent vertex will or will not increase the

objective function value. We will use this property in proving Theorem 1 in Section 3.

Property 2.2 . Let (v^, v^) be an edge of a given tree T. Let (J^*, J*) be an optimal bi-partition over

edge (Vg, V() and U a solution with Uj g T^ ( Uj g T^) if j g Q ^ U' obtained from

U by moving a subset of new facilities located on v^ (on v^) to v^ (to v^), f(LT) - f(U) > 0.

Returning to the multimedian problem P on a multiblock network, the following property

demonstrates partially the homogeneity effect at a given cutpoint vertex. This property is based

on the triangle inequality and the definition of a gated pair.

Definition 2.1 . For any given solution U to P and any gated pair (G(v, B), G(B, v)), define the

corresponding partition of J over (G(v, B), G(B, v)) as (J^, Jb) where Jy = {j : Uj g G(v, B)} and Jb

=
{j :UjG G(B, v)}.

Definition 2.2 . For every new facility j, define the ’’weight” of a subnetwork G* w,r.t. a new

facility j as W0)(G’) = X {wyi Vj g G’}, and for any subset J’ of J, define the ’’weight” of subset J’

w.r.t. a new facility
j
as V(i)(J’) = X {vjj^ : k g J'} with VO)(0) = 0. For the single new facility

case, we use W(G’) and V(J') to denote the equivalent terms Wfi)(G’) and Vfil(J’).
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Property 2.3 . Let U be any given solution to P and let (G(v, B), G(B, v)) be any given gated pair.

Let U' be the solution obtained from U by moving a subset S of new facilities currently located in

G(B, v) to vertex v. Then
f(U) - f(U') > I { Aj(S) d(v, Uj): j€ S } + UCUtS)

where for each j e S, Aj(S) = [W<J)(G(v, B)) + VCi)(Jy)] - [W0)(G(B, v)) + V(i)(Jg\S)], and

fNN(U:S) = I X {Vjkd(Uj, Uk); j < k, j, k e S}.

Proof. Since only the locations of new facilities in S are changed,

f(U)-f(U') = Ijgs{I{Wij[d(Vi, Uj) - d(Vi, v)]IVieG(v, B)} + I{Wij[d(Vi, Uj) - d(Vi, v)]lvi€ G(B, v)}

+ X{Vjk[d(Uj, Uk) - d(v, Uk)]lke Jy} + I{Vjk[d(Uj, Uk) - d(v, Uk)]lke Jb\S} }

^j<k,j,k6S '^jk ^(^j> ^k)‘

For each facility in G(v, B) (i.e. an existing facility in G(v, B) or a new facility in Jy), the

corresponding difference of the distances (the term in the square brackets) is d(Uj, v). Replace

this difference by d(uj, v). Based on the triangle inequality, for each facility in G(B, v) the

corresponding difference of distances is no less than -d(v, Uj). Replace this difference by

-d(Uj, v). Taking out the common factor d(uj, v), the result follows immediately. |

2.3 Localization

In this section, we give the proof of our main localization result. The localization is based

on studying the weight distributions in G through the blocking graph BG.

Since BP is a tree-multimedian problem, the discussion in Section 2.2 about the tree-

multimedian problem goes through here. To relate the optimtd information of BP to that of P, we

have the following observations. As with an arbitrary tree network, edge (cv, CB) defines two

subtrees. Let subtree T(cv, CB) be the one containing cv and T(CB, cv) be the other subtree.

Then, T(cv, CB) is a "copy" of G(v, B) in the sense that every vertex in G(v, B) has its copy in

T(cv, CB). Similarly, T(CB, cv) is a "copy" of G(B, v). Figure 2.2b gives the copies of the gated

pair of Figure 2.2a in the corresponding blocking graph. Thus, an edge (cv, CB) in BG defines a

gated pair (G(v, B),G(B, v)) in G. Consequently, we have

Remark 2.1 . W0)(G(v, B)) = W(i)(T(cv, CB)) and W(i)(G(B, v)) = W0)(T(CB, cv)) for all j.
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Using Kolen's Algorithm 2.1, one can determine an optimal bi-partition for BP over any

given edge (cv, CB) of BG. In the following, we will show that any such an optimal bi-partition

for BP determines an optimal bi-partition for P on the gated pair (G(v, B), G(B, v)). This optimal

bi-partition property is represented in the form of dominating relations in the Lemma below.

For a given optimal solution Z* to BP, let (Jcv*. Jcb*) ^ optimal bi-partition for BP over

an arbitrary edge (cv, CB) of BG. For a given solution U to P, let (J^, Jg) be the bi-partition of J

(see Definition 2.1) over the corresponding gated pair (G(v, B), G(B, v)). Let L = Jjy'nJg and R

= Sets L and R represent the inconsistency between these two bi-partitions. To reduce

inconsistency, we move new facilities in L to vertex v. Denoted by the resulting solution, we

will prove, in the Lemma, that dominates U (i.e. f(U) > f(U^)). First of all, we need the

following two properties on the lower bounds for f(U) - f(U^).

Property 2.4 . f(U) - f(UL) > pO(L) = IjeL^jfL) d(v, Uj) + f^(U : L), where for each j e L

5j(L) = [W0)(G(v, B)) V0)(J^/ \ L)] - [W0)(G(B, v)) V(i)(JcB*)]-

Proof. The movement of changing U to here is the same as that defined in Property 2.3 with

the set L to be the set S in Property 2.3. Thus, we have

f(U) - f(UL) > I { Aj(L) d(v, Uj)l jeL}+WU : L)

where for each j e L,

Aj(L) = [W0)(G(v, B)) -I- V0)(J^)] - [W(j)(G(B, v)) -h V0)(Jb\L)].

Since = (J^^* \ L)uR and Jb\L = Jcb* \ R, we have V(i)(J^) = V0)(J,^* \ L) -t- V0)(R) and

V0)(Jg\L) = V(j)(JcB*) - V(i)(R). Thus,

Aj(L) > [W0)(G(v, B)) + V0)(J^^*U.)] - [W0)(G(B, v)) -h V0)(Jcb*)] = 5j(L).

Each A;(L) > 5j(L) implies the result of this property. |

We see that the fnN(U : L) in this lower bound is still location dependent. The following

property gives a lower bound which is location independent.

Property 2.5 . By renumbering new facilities if necessary, assume that L = { 1, ..., p} for some p, 1

< p < n, and that d(v, Uj,) < d(v, u^+i), h = 1, ..., p-1. Define

01 = d(v, Ui), 01, = d(v, Uh) - d(v, U(,.i) (Note that 0},
> 0), h = 2, ..., p;
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Then f(U) - f(UL) > p(L) where P(L) =I [ I 6:(L\{ 1 h-1 }) ] 0h.
h=l j=h

^

Proof. From Property 2.4, f(U) - f(U^) > P‘^(L). Note that

j j
k j

d(v, Uj) = I 0h, j
= 1, .... p, d(Uk, Uj) > d(v, Uj) - d(v, Uj.) = I0h - I0h = I 0h. k < j, j. k € L.

h=l h=l h=l h=k+l

Substituting these equalities and inequalities into P®(L) gives

p j p-i p j

po(L) > I [5j(D ( 1 0h )] + I [ I Vkj
j=l ’ h=l k=lj=k+l

'
( I 0h)]=LB,

h=k+l

Changing the order of addition in LB and collecting the terms associated with the same 0),,

p p p h-1

LB = I 5j(L) 0, + I I [5j(D + I Vkj] 0h-
j=l •’ h=2 j=h ’ k=l

^

h-1

Note that &(L)+V0)(S) = 5:(L\S) for any Sc=L, jg S. Thus, with Ivu; = V0)({ 1 h-1 }), we have
^ k=l

^

P P P

LB = 1 5j(L) 0. -I- I I 5;(L\{ 1, ..., h-1 }) 0u = p(L).
j=l ^ h=2j=h

^

The conclusion now follows. |

With the lower bound in Property 2.5, we now show that f(U) - f(U^) ^ 0. We would like

to point out the resemblance of this dominance relation to the Majority Theorem of Goldman and

Witzgall (1970) for the 1-median problem.

Lemma . For any given solution U to P, for any given edge (cv, CB) in BG, and an optimal

bi-partition for BP, let L, R, and be the terms associated with solution U, the edge (cv, CB)

and the optimal bi-partition. Then, f(U) > f(Lf^).

Proof . By re-numbering the new facilities if necessary, assume that L = { 1, ..., p} and d(v, Uj,) ^

d(v, u^+i), for h = 1, ..., p-1. Thus, all the conditions in Property 2.5 are satisfied. We only need

to show that P(L) > 0

p

Denote by Ku the term S 6:(L\{ 1, ..., h-1 }) in P(L). We have
k=h

’
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p

Kh= I5j({h p})
k=h

= I {[WCi)(G(v, B)) + V(j)(J,,^{h,...,p})] - [W(i)(G(B, v)) + V(i)(JcB*)]}
j=h

p

= I {[WCi)(T(cv, CB)) + VO)(J^/\{h,...,p})] - [Wa)(T(CB, cv)) + VO)(Jcb*)]}.
j=h

The last sum equals to F(Z') - F(Z) in problem BP, with Z, Z' the solutions of BP defined as

follows. In Z each new facility j is located on cv ( on CB ) if Jg (j^ ^CB*) obtained

from Z by moving new facilities h, p from cv along edge (cv, CB) into CB. Since (Jcv*» Jcb*)

is an optimal bi-partition for BP on (cv, CB), this movement is the movement defined in Property

2.2. Thus, we have F(Z') - F(Z) > 0. This show that each > 0. Since p(L) = 0h and each

©h > 0, we have the result. |

The following corollary is the one that we think gives the insight for our localization result.

Corollary . Let (Jcv"*, Jcb"^) ^ optimal bi-partition of BP over subtree pair (T^y, T^b)

some vertex v and block B. Then, there exist an optimal solution to P such that all the new

facilities in J^y”^ are located in G(v, B) and each new facility in J^b* is either located in G(B, v) or

on vertex v.

Proof. We give the proof by showing that for any given solution U inconsistent with the location

description of the corollary, we can find a solution, say U', that is consistent and f(U') < f(U).

Recall that is the dominating solution for edge (cv, CB). Solution is derived from U by

moving new facilities in index subset J^y^ but not currently located in G(v, B) to vertex v. From

the Lemma, f(U^) < f(U). For this U^, the inconsistency now comes from those new facilities in

JcB* but currently located in those G(B(j^), v)'s, where each B(j^) ^ B. Let the set of these new

facilities be L'. Applying the Lemma to edges (cv, CB(j^))’s one at a time, we move the new

facilities in L' to vertex v without increasing the objective value. The resulting solution is U’.
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Now, we prove our main localization result. Recall that for any solution Z to BP and any

solution U to P, a new facility j conforms to Z if Uj = when Zj = cVj for any s, and U; e Bq when

Zj = CBq for any q. Solution U conforms to Z if every new facility in U conforms to Z.

Theorem 1 . Let Z* be an optimal solution to BP. There exists a vertex optimal solution U* that

conforms to Z*.

Proof. We will show that for any solution U, we can construct a solution U" conforming to Z*

with f(U") < f(U).

If in U a new facility j does not conform to Z, then either U: ^ v^ when Z: = cVj for some s,

or Uj € Bq when Zj = CBq for some q. For the first case, new facility j must be in some G(B|j, Vj)

for some B|j. With gated pair (G(Vj, B]j), GfBj^, v^)), the corresponding edge (cv^, CBj^) in BG,

and solution U, we can obtain a dominating solution by applying the Lemma to the edge (cVg,

CBjj). In deriving from U, a set of non-conforming new facilities in G(Bj(^, v), including new

facility j, are moved to v^ without increasing the objective function value. For the second case,

new facility j must be in some G(B', v') for some cutpoint vertex v' connecting block Bq and B'.

Similar to the first case, we can move a set of non-conforming new facilities, including new

facility j, to v' without increasing the objective function value. In both cases, the resulting

solution after the movement has at least one more new facility that becomes conforming since the

movement does not move any conforming new facility. Thus, by performing at most n

movements, we can construct the solution U". |



CHAPTERS
THE MULTIMEDIAN PROBLEM ON A GRID NETWORK

In this chapter, we study the multimedian problem Pg on a grid network Ng, where
g’

n

Pg: Minimize f(U) = I f:(Uj) + InnCU),
U G Ng" j=i

m
with fj(Uj) = I Wjj d(Vj, Uj), j

= 1, n, and fj^CU) = S Vji. d(uj, u,,).

j=l lij<k^

In some applications of the multimedian problem, such as the facility layout, locating

pickup/loading point, and locating warehouses on a city street network, the networks encountered

are often grids or grid-like. Though grid networks are specialized cyclic networks, problem Pg is

strongly NP-hard (Tamir 1993). Yet, using the rectilinear distance underestimates of grid

network distances, we construct a polynomial-time solvable rectilinear multimedian problem P^

as a lower bounding problem for Pg. Problem Pj. is asymptotic to Pg as the grid network becomes

"closer" to a rectilinear grid. While it has been widely assumed that this approximation

relationship between the two types of distances is satisfactory, we know of no studies conducted,

either theoretically or experimentally, about this approximation. This chapter is, then, to study

this approximation with respect to the multimedian problem in order to solve Pg better.

This chapter is organized as follows. Section 3.1 studies the relationship between P^ and Pg

and gives a dominance relation for Pg. Section 3.2 considers finding a near-optimal solution to Pg

based on an optimal solution to P^. Due to the dominance relation in Section 3.1, we find a

polynomial-time algorithm to solve problem Pg* - a subproblem of Pg, in which new facilities are

restricted to grid intersections. Our computational experience suggests that Pg* is, on average, a

good approximation of Pg. Section 3.3 proposes a branch and bound scheme. Section 3.4 reports

computational results for the branch and bound algorithm.

27
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3.1 Relations Between P
g
and

In this section we will give some theoretical results on the approximation relationships

between P, and Pg. We divide this section into four subsections. The first subsection reviews the

decomposition of P^. The second subsection discusses some basic relations between Pj and Pg.

The third subsection discusses a useful dominance relation for Pg based on a given optimal

solution of Pf. The final subsection is a worst-case analysis of the approximation.

3.1.1. Decomposition of P,.

A grid network has an embedding in the 2 dimensional Euclidean space E^, so that every

vertex on the grid network has coordinates in E^. Let (v^j, Vyj) denote the coordinates of vertex v;

and let (u^j, Uyi) denote the coordinates of location variable Uj. Recall that denotes the

rectangular area enclosed by Ng. Rectilinear problem P^ can be expressed as;

n

P • Minimize h(Z) = Z h:(Zj) + hN^CZ),
Z € j=i

^ ^

where the hj’s and h^N are obtained by replacing the grid network distances in the fj's and by

the corresponding rectilinear distances. It is well-know that P^ can be decomposed into two

independent multimedian problems (Francis, McGinnis, and White, 1992) as follows:

Ptx: ‘’x(Zx) = Ij li Wijlv^i - Zjjl + VjfclZjj - z^l, and

Pjy: Mininuze hy(Zy) = Ij wylVyj - Zyjl + Vj,,IZyj - Zy^l.

Z»y € K"

Problems P„ can be transformed into multimedian problems on path networks Tj^ = (V^^, E^) as

follows. Let = {Sji, s,2 Sjpl s^i < s^i+i. i = 1. P*1 } be the set of the distinct x-coordinates

of the vertices of N_. Then, T. is the path network of p nodes t^j, ..., t„ with t^j adjacent to t^j+i

and d(t^, t^j+i) = s^j+j - s^j, i = 1, ..., p-1. For each vertex t^j, assign weights Wy* = L{Whj I v^h =

s^:}, i = 1, ..., p, j = 1, ..., n. Problem P„ thus can then be expressed as

P„; Nfinimize Ij I; Wy*d(t^i, z^j) + Iisj<k^Vjkd(Zjj, z^)
Zx € Tj"

With path network Ty similarly constructed and weights on Ty similarly assigned, problem P^y

can be expressed as
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Pfy. Minimize Xtj Wjjycl(tyj, Zyj) + ^yk)‘

Zy € Ty"

It is well-know that a solution Z* is optimal to P, if and only if Z^* and Zy* are optimal to P„ and

P^ respectively.

3.1 .2. Some Basic Relations between P
g
and Pf

With the embedding of N„ in E^, a solution U to Pg is also a vector of n points in E^, so

that U is a solution to Pp Since rectilinear distances are underestimates for the corresponding

grid network distances, we know the following.

Remark 3.1 . For any solution U to Pg, h(U) < f(U), with equality holding if and only if

a. Wijd(Vj, Uj) = WjjrfVj, Uj), Vi, j, and b. Vj^dfuj, u^) = Vji,r(Uj, u^), Vj, k.

One special case for which conditions a and b are true is when U is an intersection solution.

Conditions a and b can serve as a measure of the approximation a Z* has. Let a closest solution

U' to Z* be a solution with each Uj' one of the closest points on Ng to Zj*. If U' has few violations

in a and b and h(U') is "close" to h(Z*), we would consider Z* a good approximate solution of Pg.

One extreme case is when Z* is a solution to Pg and it satisfies conditions a and b above. In this

case, Z* is an optimal solution to Pg.

3.1.3. A Dominance Relation

Since the solution set for Pg is contained in the solution set for Pp we can use some

necessary optimality conditions for P^ to obtain some useful dominance relations for Pg. In this

subsection, we describe one.

3. 1 .3. 1 Some A-Posteriori Dominance Relations for

As far as we know, the only known a-posteriori dominance relation for MMP is related to

the convexity property ofMMP defined on tree networks. That is, for an optimal solution X* and

another solution X of some MMP on a tree network, the set {Z I Z = XX + (1-X)X*, 0 < X < 1 } is a

dominant solution subset of X (Dearing et al. 1976). Unfortunately, this specific definition of

convex combinations is too restrictive to help in our subsequent analysis. In the following, we
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introduce a similar concept, and use this concept to express an a-posteriori dominance relation for

MMP defined on path networks. This dominance relation on path networks is then utilized to

obtain an a-posteriori dominance relation for Pp

Definition 3.1 . For any given n-vectors X, Y on a given tree network T, a X-combination XX +

(l-X)Y, X = (Xj, Xn)"^, 0 < Xj < 1, is an n-vector Z with Zj the point a distance of (l-Xj)d(Xj, yj)

from X: on the path connecting X: and yj, j
= 1, n.

The difference between the X-combination and the convex combination is in that the latter

requires that any two Xj, Xj^ are identical. Now, we concentrate on path networks. Let T be a path

network with one end point designated as the origin, so that T is an ordered set. Thus, for any

two n-vectors X = (xj, ..., x„) and Y = (yj, ..., yJ of points on T, we have either Xj < yj, Xj = yj, or

Xj > yj
for each j. Consider the following definition of a partition of the index set { 1 n} based

on the relative positions of Xj's about the corresponding yj's.

Definition 3.2 . For any given X, Y e T", let L(X I Y) = {j 1 Xj < yj} and R(X I Y) = {j I

yj
< Xj}.

For any X and Y e T", let Z be a X-combination of X and Y. Then, for each Zj we either

have Xj < Zj <
yj

if Xj < yj, or
yj
< Zj < Xj if otherwise.

Definition 3.3 . For a X-combination Z of X, Y e T", let L(X I Y)'*' = {k I x^ < Zj^} and R(X I Y)'*' =

{k I Zk < x^}. Let L(X I Y)0 = L(X I Y) - L(X I Y)+ and R(X I Y)<> = R(X I Y) - R(X I Y)+ (It is

easy to see that L(XIY)+ c L(X I Y) and R(XIY)+ c R(X I Y)).

Definition 3.4 . A X-combination Z of X and Y is said to be ordered like Y if it satisfies the

following two conditions:

a. for any k e L(X I Y)+ and any j e L(X I Y), if Zj < Zy. then
yj < yj^;

b. for any k e R(X I Y)+ and any j e R(X I Y), if Zj > Z(j then
yj > yj^;

What Definition 3.4 says is that Z is ordered like Y, if the order relation between Zj and

is the same as that between
yj

and yj^ for every index pair (j. k) in S(Z) = {(j, k)lk e L(X I Y)+,

j e L(X I Y), Zj < Zfc} u {(j, k)lk g R(X I Y)+, j g R(X I Y), Zj > z^}. This order conformity is

similar to a more common one (call it conformity C) - two vectors Y and Z have order conformity
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C if and only if there exists a mapping a such that < Zg(2)
< and < •••

y<j(n); O'" equivalently that for every index pair (j, k), if Z: < Z|j then
yj < y|j. Definition 3.4 requires

order conformity for a subset S(Z) of index pairs, whereas order conformity C requires order

relation conformity for every index pair. Hence, the latter one implies the former.

Example 3.1 . For the X and Y in Figure 3.1, we have L(X I Y) = {2, 3 } and R(X I Y) = { 1 }. The

Z's shown in Figures 3.1a, ..., 3. Id are all X-combinations of X and Y. Since R(X I Y) is a

singleton, R(X I Y)+ c R(X I Y) will be either an empty set or a singleton. Therefore, there exist

no index pairs satisfying the premise of condition b, so that any X-combination ofX and Y

satisfies condition b vacuously. Therefore, any X-combination of X and Y satisfying Condition a

of Definition 3.4 is ordered like Y.

X
3

z
3

y
1

—
X
2

(a)

z
2

X
1

X
3

y
1

3^
2

X
1

(b)

X
3

y

—

1

^
2 y,

-
X

1

(c)

z
3

X V 5^ -V

—

z
1 —V

X

Figure 3.1 X-Combinations with Z ordered like Y in (a) and (b) only

For the Z shown in Figure 3.1a, we have L(X I Y)+ = {2, 3} and R(X I Y)+ = { 1 }. Since

both Z2 < Z3 and y2 < y3 . Condition a is satisfied. Therefore, Z is ordered like Y. For the Z shown

in Figure 3.1b, we have L(X I Y)+ = {3}. In this case. Condition a is vacuously true since there
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are no index pairs satisfying the premise of Condition a. For the Z shown in Figure 3.1c, we have

L(X I Y)+ = { 2, 3 } . Since Z3 < Z2 but y3 > y2 , Condition a is not satisfied, so that Z is not ordered

like Y. Finally, for the Z shown in Figure 3. Id, we have L(X I Y)+ = {2}. Again, since Z3 < Z2

but y 3 > y2 , Z is not ordered like Y.

As a final note, we see that a convex combination defined by Dearing et al. is a special case

of a ^-combination. A convex combination is not necessarily ordered and a X-combination

ordered is not necessarily a convex combination. Now, we give an a-posteriori dominance

relation for MMP on path networks. The proof is in Appendix A.

Property 3.1 . Let P be a MMP on a path network T. For an optimal solution X* and another

arbitrary solution X to P, any X-combination X' of X and X* ordered like X* dominates X (i.e.

f(X') < f(X), where f is the objective function of P).

Since problem P, can be decomposed into two independent MMP's, P„ and Pyp on path

networks. Property 3.1 can be used to obtain an a-posteriori dominance relation for P^.

Property 3.2 . Let Z* be an optimal solution to P^ and Z be any other solution to P,. Then, a

solution Z' dominates Z, if

a. Z^' is a X-combination of Z^ and Z^* and is ordered like Z^*, and

b. Zy' is a X-combination of Zy and Zy* and is ordered like Zy*.

Proof. We know that Z^* and Zy* are optimal solutions to P„ and Pyj respectively. Thus, from

condition a and Property 3.1, we have h^(Z^') < h^fZ^). From condition b and Property 3.1, we

have hy(Zy') < hy(Zy). Hence, h(Z’) = h^(Z;) + hy(Zy') < h,(Z^) + hy(Zy) = h(Z). |

Based on Property 3.2, we will give a special case of the dominance relation for Pp which

is expressed in the geometric terms of N„. This special case will then be used to develop some

insightful dominance relations for P~ in the next subsection. First, we need to introduce some

geometric terminology for N„. Let vl^j, .... vl„ be the x-coordinates of the vertical grid lines and

let hlyj, ..., hlyq be the y-coordinates of the horizontal grid lines. For a Z*, define Izj* and rzj* to
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be, respectively, the x-coordinate of the "left" and the "right" adjacent vertical grid lines of z

that is, Izj* = maximum {vl^i I vl^j < z^j*} and rzj* = minimum{vl^i I vl^j > z^:*}. Let bzj* and

and tZj* be defined similarly for the bottom and top adjacent horizontal grid lines.

Definition 3.5 . (Covering Row and Column) The covering column (covering row) of z
*
is the

set of points p such that Izj* < Px < rzj* (bz;* < Py < tz;*).

In words, the covering column (covering row) of Zj* is the set of interior points of the grid

column (the grid row) in which Zj* is an interior point. If z
*

is an interior point of a column (a

row) only, then the covering row (column) of z
*
is an empty set. Therefore, if Zj* is tui

intersection, then both the covering column and the covering row are empty sets.

Example 3.2 . Figure 3.2 is an example illustrating the covering columns and rows for a given Z*.

The covering row of Z2
* is an empty set, since bz2

* = tZ2
*. Similarly, the covering column and

row of Z
3
* are empty sets.

The Covering Columns of zf and Z2

Figure 3.2 Covered and Uncovered Solutions
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Definition 3.6 . For any solution Z of and an optimal solution Z* of P^, new facility location Zj

is said to be covered if Z; is an interior point of the covering row and/or covering column of z *.

Solution Z is uncovered if every Zj is uncovered. Otherwise, when some Z;'s are covered, we call

solution Z covered .

For example, in Figure 3.2, solution Z is an uncovered solution and solution Z' is covered.

Definition 3.7 . The set of neighboring intersection points of z
*
is NIP: = {(Iz;*, bz:*), (Izj*, tZj*),

(rZj*, bZj*), (rZj*, tZj*) } . The neighbourhood rectangle Nj of z
*
is the convex hull of the

neighboring intersection points of Z;*. A solution Z is a neighboring solution (NS) if Zj € Nj, j
=

1, ..., n. Otherwise, Z is a nonneighboring solution . A solution Z^ of P^ is a neighboring

intersection solution (NIS) if z^ e NIP:, j
= 1, ..., n.

As an example, for the Z* given in Figure 3.2, we have NIPi = {a, b, c, d}, Nj = { p 6 N^l

a, < p, < c^, by < Py < dy}, NIP2 = { b, c}, N2 = {p e Nf I b^ < p, < c^, py
= by}, and NIP3 = N3 =

{Z3*}. We see that Nj is a non-degenerate rectangle in N^ while N2 and N3 are degenerate.

Definition 3.8 . (Closest Neighboring Solution)

Let Z* be an optimal solution to Pp For any nonneighboring solution Z of Pp define its unique

closest neighboring solution Z<= as the following. If Z; e N: then Z:^ = Z:. If Zj e Nj, then let Zj<=

the unique closest point to Z;, in terms of the rectilinear distance, in Nj.

Remark 3.2 . If a Zj is uncovered, then its closest point in Nj is an intersection point. Thus, for

any uncovered solution Z of Pp its closest neighboring solution is a neighboring intersection

solution. If a z-. is covered, then there are three cases:

a. Zj is covered by both the covering column and covering row of Zj*;

b. Zj is only covered by the covering column of Zj*; and

c. Zj is only covered by the covering row of Zj*.

For case a, since Zj e Nj, we have zf = z-.. For case b, Zj may or may not be in Nj.

Nevertheless, we have

tZj* if Zyj > tZj*

^xf = Zxj and Zyf = i

I bZj* if Zyj < bZj*.
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Zyj^ — Zyj and

rZj* if z^j rZj*

. Izj* if z^j < Izj*.

We see that for any j, the is either Izj*, rzj*, or z^j* depending on whether z^j is to the left, to

the right, or an interior point of grid interval [Izj*, rzj*]. Similarly, Zyj*= is either bzj*, tzj*, or Zyj*

depending on whether Zyj is to the left, to the right, or an interior point of grid interval [bzj*, tzj*].

As an example, for the Z* given in Figure 3.3, and TP are respectively the closest

neighboring solutions of Z and Z’. We see that Z‘= is a neighboring intersection solution. Since

z,' and Z2' are covered, we have z^j^' = z^j', Zyj' = bbyj, and Zy2
^' = Zy2', z^2

*^' = rb^2-

Now, we can give the a-posteriori dominance relation for in the geometric terms of Ng.

—
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z; !

1

Figure 3.3 The Closest Neighboring Solutions

Property 3.3 . Let Z* be an optimal solution of P^. Then, for any nonneighbor solution Z of P, its

closest neighboring solution Z« dominates Z (i.e. h(Z®) < h(Z)).
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Proof. From Property 3.2, it is sufficient to show that 2^ is a ^-combination of and 2*

ordered like Z^*, and 2S is a X-combination of Zy and Zy* ordered like 2*. We only need to

prove the first case, since, except for notation, the proof of the second case is the same.

Define a partition of the new facility index set J as L+ = {j I < Izj*}- R+ = {j I z^j > rzj*},

L° = {j I Izj* < Zxj < z^j*}, and R° = {j I z^* < z^j < rzj*}. From the definition of Z=, we know that

Zxk* - > ^Xk' fo*" ^ ^ L+ (3.1)

z^j* < Zj!^ = rZj* < z^j, for any j e R+ (3.2)

z^j* > z^j<= = Zxj, for any j e L°, and (3.3)

z^j* < Zjj<= = z^j for any j e RO, (3.4).

From (3.1), ..., (3.4), z^k'^ is a point in the path connecting Zj^ and z^k*, for k = 1, ..., n. This

shows that solution Z<= is a X-combination of Z^ and Z^*.

Now, we show that 2.^ is ordered like Z^*. Let L(Z^ I Z^*) and R(Z^ I Z^*) be the sets of

indices defined in Definition 3.2. From (3.1) to (3.4), sets L+, L®, R"*", and R*^ are the same sets

defined in Definition 3.3. Therefore, we can use these sets to examine whether conditions a and b

in Definition 3.4 are satisfied. Since Conditions a and b are symmetric, we only need to show

that Condition a is satisfied. That is, for any k e L+ and any j g L(Z^ I 2^*), if Zjf < then z^j*

< z^*. To prove by contradiction, suppose that there is a j g L(Z^ I Z^*) such that z^^ < z^k*^ but

Zjj* > Zjk*. This assumption implies that Izj* > Izk*, from the definitions of Izj* and IZk*. From

(3.1), z^c = Izk*, so that z^f < Izk* < Izj*. Since j g L(Z^ 1 Z,*), we know that z^j < < z^f < z^j*, so

that Zjj < Izj*. From the definition of Zjj<=, z^j < Izj* implies that z^j' = Izj*. Thus, Zy.f
> IZk*, so that

Zj^ < z,j<= which contradicts to the assumption z^^ < z,^. |

3.1 .3.2. A Dominance Relation for P
,,

Here, we will argue that for a given optimal solution Z* to Pp the neighborhood

(NjX ... xN„) n Ng contains an optimtd solution or a near-optimal solution to Pg. For any

nonneighboring solution U of Pg and its closest neighboring solution we have



f(U) - f(U=)= h(U) + A(U) - (h(Uc) + A(UC))

= h(U) - h(Uc) + (A(U) - A(U<:)),
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where A(U) = f(U) - h(U). From Property 3.2 we know that h(U) - h(U‘=) > 0. We can show that

A(U) — A(U^) — SjeC'^ie ^j)

here 6(., .) = d(., .)
- r(., .), C and C are, respectively, the sets of uncovered and covered new

facilities in U; A(j) is the set of vertices each of which has its grid network distance to U; greater

than the corresponding rectilinear distance; and D(j) (0(j)) is the set of vertices in the grid edge

containing Uj<= (uj). Value A(U) - A(U‘=) is likely to be non-negative, let alone that h(U) - hfU*^) is

usually larger than IA(U) - A(U<=)I. From the convexity nature of function h, the "further away" U

is from (in terms of Zjr(uj, Uj<=)), the larger h(U) - h(U<=). By contrast, A(U) - A(U'=) is

invariant to the "distance" from U to U<=. Thus, the "further away" U is from U‘=, the more likely it

is that f(U) > ffU*^). When U is "near" U'=, we should have f(U) close to ffU*^), so that if U is a

near-optimal solution then should also be a near-optimal solution. All these analyses indicate

that there often exists a near-optimal solution of Pg among the neighboring solutions of Z*.

• • • • •

Figure 3.4 The Graphs of f and h



38

To help get insight into the convexity nature of h and the relative magnitude of 6 compared

with h, we include, in Figure 3.4, a conceptual illustration of the graphs of h(u) and f(u) of a

single facility MMP, as u moves along a grid line.

Due to the variety of grid networks and the arbitrariness of the weight distribution pattern

over the network, it is difficult to obtain general analytical results for the relationship between

optimal solutions of and optimal solutions of P». For example, though in most cases the

neighbourhood (Nj x ... x Nn)nNg of Z* contains an optimal solution of Pg, there exist some

extreme instances with optimal solutions not in the neighbourhood. Still, we are able to identify

analytically a dominated set which is a subset of nonneighbor solutions of Pg.

Corollary 3.3.1 . The set of neighboring intersection solutions of Pg dominates the set of

uncovered solutions of Pg.

Proof. From Remark 3.2, the closest neighboring solution U‘= of an uncovered U is a neighboring

intersection solution. Thus, A(U‘=) = 0. Hence, f(U) - fCU'^) = h(U) - h(U') + A(U), where A(U) =

f(U) - h(U) is a nonnegative term. From Property 3.3, h(U) > hCU*^). Therefore, f(U) > f(U‘=). |

Since each solution of Pg is either covered or uncovered, a localization result follows.

Corollary 3.3.2 . The union of the set of covered solutions of Pg and the set of neighboring

intersection solutions contains an optimal solution to Pg.

Furthermore, since all the intersection solutions are uncovered, from Corollary 3.3.2., we

know that each intersection solution is either a neighborhood intersection solution or is dominated

by some intersection solution. Thus,

Corollary 3.3.3 . The set of neighboring intersection solutions contains a best intersection

solution.

Corollary 3.3.3 helps reduce considerablly the effort of finding a best intersection solution.

Experiment later in this chapter shows that large percent of instances of Pg has the best

intersection solutions as the globally optimal solution. We will give a polynomial-time algorithm

for the best intersection solution, in subsection 3.2.2.



39

3.1 .4. A Worst-Case Analysis of the Gap f(U*) - h(Z*)

The following property and the example afterward give some insight into the quality of

the approximation. Let L be the longest grid edge length in Ng. Let W: be the total weight of Ng

associated with new facility j
and let W^n be the total interaction weights of Pg.

Property 3.4 . f(U*) - h(Z*) < (Ij Wj + 2 W^) L.

Proof. Let Z' be the solution with each z
'

the closest intersection point of z *. Then,

h(Z’) - h(Z*) = Ijj wy [r(Vi, zj') - r(Vj, Zj*)] + Vjk[r(zj', Zk’) - r(zj*, Zk*)]

^ lij wy [r(Vj, Zj’) - r(Vj, Zj*)] + I<j.k>€S Vjk[r(z/, Zk') - r(zj*, Zk*)],

where S is the set of new facility pairs <j, k> such that r(Zj', Zk') > r(Zj*, Zk*). Since Zj' is the

closest intersection point of z
*

r(Zj’, Z:*) < L. Thus, from the triangle inequality, we have

r(Vj, Zj') - r(Vj, Zj*) < L.

r(Zj’, Zk’) - r(Zj*, Zk*) < r(Zj', Zj*) + r(Zk', Zk*), V<j, k> e S,

so that

r(Zj', Zk’) - r(Zj*, Zk*) < 2L, V<j, k> e S.

Thus

h(Z’) - h(Z*) < [IjWj + 2l<j,k>^sVjk]L.

From the last inequality, the worst-case bound is easily obtained by assuming that every new

facility pair in Pg is in S. |

The following example gives an instance ofMMP which has an approximation gap half of

that in the worst-case. This example shows that the worst-case bound given in Property 3.4 is

only a constant ratio larger than the tightest bound.

Figure 3.5 A Grid Network of Identical Grid Edge Lengths for a Worst-Case Example
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Example 3.3 . Let P be an instance defined on the N„ shown in Figure 3.5. The network has

identical grid edge lengths of one. Parameters m and n are even integer numbers. The weights of

P are defined as follows:

Vji^ = e for Vj, k; Wjj = w, i = 1, .... m, j
= 1, ..., n;

'^m+l.j
= ^

la if j is even

. 0 o/w;

wm+2j

0 o/w

.a if j is odd;

and Wjj = 0, for the rest of the vertices (intersection vertices).

Finally, e, a, and w are positive real numbers such that cc/mw is negligible and, in order to have

U* as described below, ne < 2a.

There is an optimal Z* with each Zj* in the center of the area enclosed by Ng, and an optimal

U* with Uj* = v^^.] if j is even and U:* = v^+2 if j i® Therefore, d(vj, Uj*) - r(vj, z*) = L/2, for i

= 1, ..., m.

d(Vm+l.
]

-L/2, if j is even

I 3L/2, if j is odd
d(Vm+2- Uj*) - r(v^+2. Zj*) = ^

-L/2, if j is odd

. 3L/2, if j is even

and

fo.

d(Uj*, Ufc*)
- r(Zj*, Zk*) =

j

l2L

if both j and k are odd, or both j and k are even,

otherwise.

Therefore,

f(U‘) - h(Z*) = nmw(L/2) - leven j«L/2 - IoddjaL/2 + ja(3L/2) + Ieve„ ja(3L/2)

+ Xeven j ^odd

= nmw(L/2) + 2naL + 2e(n/2)^L

= [mw/2 + 2a + en/2]nL.

The worst-case estimation of f(U*) - h(Z*) is [mw + a + en]nL. The ratio between the real gap

and the worst-case estimation is 1/2 + o/[mw + a + en]. Since o/mw is negligible, the ratio is

approximately 1/2.

3.1.5. Summary

In this section, we introduced the following concepts which all related to the structure of Ng

in the vicinity of Z*. They are, the neighborhood of Z*, the neighboring and nonneighbor
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solutions, and the covered and the uncovered solutions. We demonstrated through Corollary

3.3.1 that most of the nonneighbor solutions of Pg are dominated by their closest neighboring

solutions, so that the set of neighboring solutions of Pg contains near-optimal solutions of Pg. We

established analytically that the set of uncovered solutions is dominated. This result leads to a

localization result for the best intersection solutions. We also provided a worst-case bound on

f(U’) - h(Z*).

3.2. Heuristics for Solving Pg

The grid network multimedian problem Pg is NP-hard (Tamir, 1993). From the last section

we see that by solving P, it is possible to identify a solution subset containing a near-optimal

solution. But, it is not generally true that such a subset contains an optimal solution. In this

section, we discuss some heuristics for searching over this subset, and in the last section of this

chapter we discuss the experimental results with these heuristics.

3.2.1 . Finding an Approximate Solution to Pg Based on Optimal Solutions to P,.

Heuristic 1 . Take U^*, the best intersection solution, as a near-optimal solution.

Later in this section, we will give a simple algorithm to find a U**. Now, we discuss the

insights for Heuristic 1

:

a. Solution U** is the best among all the intersection solutions. With a relatively refined grid

network, the intersection solutions should reflect the general trend of the contours of f.

b. Let U*' be a closest intersection solution to Z*. With a relatively refined grid network, h(U*') -

h(Z‘) should be small. With h(Z*) < f(U*) < f(Ui‘) = h(Ui*) < h(Ui'), the difference f(Ui*) -

h(Z*) is smaller.

c. Consider some k variables, say U(i), ..., Ud^j. Let g(U(i), ..., U(i^)) = f(uj, ..., U(i), ..., Uo^j, ..., u„) be

a function of U(i), ..., U(ij) as they vary over a grid edge while other new facilities are fixed. If,

in this grid edge, the non-interactive weights (w^'s) associated with new facilities (1), ..., (k)

are insignificant, then g tends to be "concave like". That is, either g is concave or has some

"shallow" local minima, so that one of the end points (intersection points) is the minimum or
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near minimum of g over the grid edge. This indicates that an intersection solution is usually

better than the solutions in its neighbourhood.

d. We can show that if Ng has identical edge (note, not grid edges) lengths and if every new

facility) has identical weights wy (i.e.. Wy = Wj,j for any h and i), then every best intersection

solution is a globally optimal solution. Although this choice of data is uncommon, problems

with similar choices of data are common.

The rest of the heuristics below are designed to deal with cases when a best intersection

solution is not a near-optimal solution. Let N: be the neighbourhood of z
*
(see Definition 3.7)

and let Vj be the set of vertices in Nj. Usually, Heuristic 1 fails when there are some non-

intersection vertices with large weights. Thus, we design the following heuristics which search

the interior vertices in Vj x ... x V„.

The idea of heuristic 2 is the following. For a given Z*, construct U° with UjO the vertex in

Vj that is closest to z *. For each iteration t, we choose a new facility j and search for an adjacent

vertex, say, v e Vj, of Uj* such that f will decrease if we move new facility j from Uj* to v while the

locations of other new facilities are not changed. The process terminates if no such adjacent

vertex can be found for every new facility.

Heuristic 2 . (Neighbourhood One Dimensional Search)

Step 0. For the given Z*, construct U° e V,x ... xV„ with Uj° the closest vertex in Vj to Zj*;

Let L = {j I IVjl > 1 } and let L’ = L;

t= 1;

Step 1 . If L' = 0 then terminate the search;

Otherwise, choose a j e L' and construct NVj* = { Vj Ivj is adjacent to Uj' and Vj e Vj};

Step 2. If NVj‘ = 0 then let L' = L' - {j } and go to Step 1

;

Otherwise, choose a vertex v e NVj* and let Uj' = v, U|^' = Uj^* for every k ^ j;

Step 3. If f(U') < f(U0 then go to Step 4;

Otherwise, let NVj* = NVj* - {v} and go to Step 2;
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Step 4. Let NVj‘+i = {Vj Ivj is adjacent to v and Vj € Vj} - {uj'} and NV^t+i = NVjj', for all k j;

Let U‘+i = U' and Let L' = L;

Let t = t+ 1 and Go to Step 2;

A more thorough search over V,x ... xV„ is to update an intermediate solution U* by

replacing some U;' with an optimal vertex solution of problem Pj*: Minimize
{
g(uj) = f(..., Uj.i*, Uj,

Uj^.i', ...) I Uj e Vj}. Such a process repeats itself for different j in each iteration until U* = for

some t. Each Pj‘ is solved by enumeration of Vj.

Heuristic 3 . (Local Optimal One Dimensional Search)

Step 0. For the given Z*, construct U° e VjX ... xV„ with Uj° the closest vertex in Vj to Zj*;

Let L = {j I IVjl > 1 } and let L' = L; t= 1;

Step 1 . If L' = 0 then terminate the search;

Otherwise, choose a j € L';

Step 2. Let U' be the solution with Uj;' = Ui^‘, for all k ^ j, and Uj' be an optimal solution of

Pj‘: Minimize { g(Uj) = f(..., Uj.,‘, Uj, Uj+j*, ...) I Uj e Vj};

Step 3. If f(U’) < f(U0 then go to Step 4;

Otherwise, let L' = L' - {j } and go to Step 1

;

Step 4. Let = U' and Let L' = L;

Let t = t+1 and go to Step 1;

These two heuristics change one location at a time. It is well-known that optimal locations

ofMMP tend to coincide. Therefore, it is often futile to change only one location of a set of

identical locations. Thus, we design a heuristic which treats each cluster of new facilities as a

"super" new facility. The heuristic uses an output solution of one of the above search heuristics

as input. Let U° be such a solution and let aj, .... ap be the distinct locations in U®.

Heuristic 4 . (Super New Facility One Dimensional Search)

Step 0. Construct a new MMP, SP, in which each new facility represents all the new facilities

with the same locations in U°. In SP, Wj^' = Ziwy lUjO = a„}, i = 1, ..., m, a = I, ..., p, and

Vap’ = I{Vjk I
UjO = a« and u^® = ap}, 1 < a < P < p.
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Step 1. Construct super-neighborhood V = Vj'x ... xVp' = u{ Vj luj° = a„}, a = 1, .., p.

Step 2. With initial solution IJO' = (aj, ..., ap), perform one dimensional search with either

Heuristic 2 or Heuristic 3.

3.2.2. Solving - the Intersection Restricted Pg

Recall that for a given Z*, NIP = NIPj x ... NIPn denotes the set of neighboring intersection

solutions, where each NIPj = {(Iz:*, bz:*), (Iz;*, tz:*), (rzj*, bzj*), (rzj*, tzj*)}. From Coroll£uy 3.3.3,

there exists a best intersection solution in NIP. Thus, an equivalent formulation of Pg* is

Minimize {f(U) I U € NIP}. Since every solution in Pg* is an intersection solution, Pg* is

equivalent to P,*: Minimize (h(Z) I Z e NIP} which can be decomposed into

P„*: Minimize {hj(Zj) I e {Iz;*, rz:*}, j
= 1, ..., n} and

P *: Minimize {hy(Zy) I Zyj € {bz:*, tz:*}, j
= 1, ..., n}.
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Figure 3.6 The Grid Network in Decomposition Examples

We only need to show how to solve P„*, since Pjy* is the same as P^^* except for notation.

First, we can eliminate every new facility j in P„* with Iz:* = rzj* from further consideration, by

fixing new facility j at the position and modifying the weights accordingly. Thus, we only
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consider with Izj* < rzj* for every j. Observe that, in P„’, each new facility is localized to a

block subnetwork the grid interval [Izj*. rzj*], of the path network. Let [lZ(,)*, rZ(t)*], t = 1 p,

be the distinct localized blocks. From the results in Chapter 2 , P„^ can be decomposed into p

independent MMP subproblems each of which corresponds to a block.

Example 3 .4 . Consider an instance of MMP of 3 new facilities on the grid network shown in

Figure 3 .6 . Suppose an optimal solution Z* has Zj* an interior point of grid edge (vj, V2) and has

Z2*, Z3* interior points of the rectangle with comer points V5, Vg, Vg, and Vjq. From Corollary

3 .3 .3 , the neighboring intersection solution set {vj, V2)x{v5, Vg, Vg, Vjg} x {vg, Vg, vg, vjq}

contains a best intersection solution. Therefore, the solution sets of P„* is {sj, S2} x {s2, S3, S4} x

{S2, S3, S4}, where s/s are the four vertices of path network T^. Problems P^r^ can be formulated

as a MMP problem on in the following;

P„h Minimize KcOiidfSj, z^i) I i = 1 , ..., 4 } + KcOydfSj, z^j) I i = 1 , ..., 4 , j
= 2 , 3 } + Vi2d(Zxi, 2^2)

+ V,3d(z^i, Z^3) + V23d(z,^2.

^xl ^ *2)

^x2’ 2x3 ^ { ®2» }

We see that the solution set of Pj^* implies that Zxi is localized to block [sj, S2] and Zx2 and Zx3 are

localized to block [S2, S4]. First,

d(Si, Zxi) = d(Sj, S2) + d(s2, Zxi), for i = 3 , 4 , (3 .5 )

d(sj, Zxj) = d(sj, S2) + d(s2, Zxj), (3 .6)

and for j
= 2 , 3

d(Zxi, Zxj) = d(Zxi, S2) + d(S2, S2) + d(S2, Zxj). (3 .7)

Replace, in Pxj.*, each distance on the left hand side with its right hand side and rearrange the

distance terms.

P„h Minimize {h(i)(z^i)l z^, e {sj, S2}} + {h(2)(Zx2, Zxs) I Zxj e {S2. S3}, j
= 2 , 3 } + C

where h(i)(Zxi) = co,i'd(si, Zxj) + (02i'd(s2, Zxi),

h(2)(Zx2 ’ 2x3> = Z{C02j’d(S2, Zxj) + t03j’d(S3 , Zxj) + 0J4j'd(S4, Zxj) I j
= 2 , 3 } + V23d(Zx2* Zx3),

CO21' = <jC>2i+C03i+C04i+Vi2+Vi3, a>2j' = (0ij+0J2j+Vij, j
= 2 , 3 , cOy' = cOjj for the other i, j,

and C is a constant involving those constant distances in (3 .5) to (3 .7). Clearly, Px^' can be

decomposed into two independent problems.
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Minimize {h(i)(z^i)l z^i € {s,, Sj} } and P": {h(2)(Zx2, 2*3) ' ^xj ^ {S2- 84},] = 2 , 3 }.

We now address solving these subproblems. Let P* be such a subproblem on the localizing

block [Iz, rz] which contains vertices Vj, .... v^, Vj = Iz, v^ = rz, Vj < vj^j. pi can be expressed as

P*: Minimize {h^CZ^)' I z^j € {vj, v^},
j
= 1, n}},

where h^' is obtained from h^ by weight adjustment as discussed in Chapter 2 as well as in the

above example. If [Iz, rz] is an edge network (i.e m = 2), then the problem becomes finding an

optimal 2-partition (Ji, J^} of new facility indices such that there is an optimal solution in which

new facilities in Jj (J^) are located on Vj (v^). We can use Kolen's search algorithm ( 1982) to

determine such an optimal partition. If [Iz, rz] contains more than two vertices, we construct an

equivalent multimedian problem P on an edge network with only vertices Vj and v, and with edge

length v^ - vj, and solve P with Kolen's search algorithm.

Example 3 .5 . Consider the subproblem P" in Example 3 .4 . Since in any solution to P", new

facility location z^, is either S2 or S4, we know that

d(S3, Zxj) -
d(S2, S3)

d(S2, S4)

d(S4, Zxj) +
d(S4, S3)

d(S2, S4)

d(S2, Zxj).

By replacing d(s3 , z^j) in P” with the right hand side above, we have

P": Ij=2,3{c^j d(s2 , Zxj) + a4j
d(s4, Zxj)}, where

d(S3, S4) d(S3, S2)

®2j - ®2j+®3j T ®4j - ®4j + ®3j Tr T •

d(S2, S4) d(S2, S4)

In this way, we transform P" into a MMP problem on tin edge ($2 , S4).

In general, we construct problem P as follows. Let d(Vs, v,) = d(vj, v^). Define the weights

{ajj} ({cc,:}) on the distance between Vj (v^) and new facility] as

ttsj = Wij -t- KWjj

a,j = w^j -I- I(Wij

d(Vj, Vt)

d(Vs, Vt)

d(Vj. Vs)

d(Vs, Vt)

li = 2.

li = 2.

.., m-1].

.., m-1 }.

j
= 1, ..., n.
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Since each solution of has each new facility located on either v, or v^, and from the way the

weights of P are constructed, for each solution of P* there is a solution to P which has the same

objective value. Thus, P* and P are equivalent.

Kolen's algorithm takes 0(n3(m-l)) steps to solve a MMP with n new facilities and m

vertices. Suppose that P„* is decomposed into k subproblems of new facilities nj, ..., nj^

respectively. Then, it needs 0(nj3) steps to solve subproblem i since subproblem i is a MMP on a

network of two vertices. Hence, after P„* is decomposed, it needs at most 0(n"^) to solve P„*.

Decomposing P„^ needs 0(nm) steps. In actual implementation, we do not need to decompose

P„* explicitly.

3.3. Solving P- with Branch and Bound

Since P„ is NP-hard, we use a branch and bound approach when the heuristic results are

unsatisfactory. On the other hand, we need experience with the relations between Pg and P^ for

large problems. Currently, the branch and bound approach is the only feasible exact method for

solving a large Pg. The computational experience gained here may also be of help for the general

cyclic multimedian problem.

This section has three subsections. Subsection 1 defines the subproblems in the branch and

bound process and the initial solution set. Subsection 2 discusses the branching strategy.

Subsection 3 shows that a lower bounding problem can be solved efficiently with the solution

information obtained from the parent subproblem.

3.3.1 Subproblems and the Initial Solution Set

Let Pg* denote the fth node in the branching tree, where Pg® = Pg. Subproblem Pg* is a MMP

with solutions restricted to V* = Vj* x ... x V„*. Each V:* is the set of vertices in subnetwork

NgORj*, where Rj* = {z e N, I /fej* ^ z^ < rb^\ bb^ < Zy < tb^} is either a rectangle, a line segment,

or a point in N,.

From Section 3.1, we know that for a given optimal solution Z* to Pj there exists a near-

optimal solution of Pg in the vicinity of Z*. Thus, the initial solution set is a neighborhood R° of
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Z*. To use a simple procedure to construct an initial solution set as small as possible, we choose

to solve a series of rectilinear multimedian problems. Let U° be a feasible solution of Pg obtained

by some heuristics in Section 3.2. Let PfCu^j ^ a) be the resulting problem obtained by adding an

inequality u^j < a to P^ for some constant a. Let (Vy) denote the set of distinct x-coordinates

(y-coordinates) of the vertices of Ng. Then,

= {z I Ibp < z^j ^ rbp, bb-^ < Zyj < tb-^}, where

Ib-^ = minimum{a€ I a < z^j* and obj(Pr(Uxj ^ a)) < f(U°) },

rb'!^ = maximum! be I b > z^j* and obj(Pr(Uxj ^ b)) < f(U°)},

bbj^ = minimum{ae Vy I a < Zy]* and obj(Pr(Uyj < a)) < f(U°)},

tb'!^ = maximum {be V I b > Zyj* and obj(Pf(Uyj > b)) < f\, J°)},

VjO={VilVie RjO}.

Set VO = VjO X ... X V„o contains an optimal solution to Pg, since each RjO contains an optimal

location of new facility j. To see the latter, observe that objfPfCu^j ^ a)) is a non-increasing

function of parameter a. Hence, for any solution U of Pg with u^j < Ib-^, since it is feasible to

problem P/u^j < Ib^) and obj(Pj(Ujj < Ib-^)) > f(lJO), we have h(U) > obj(Pr(Ujj < Ib-^)) ^ f(IJ0).

From f(U) > h(U) > f(lJO), solution U can be eliminated from further consideration. Similarly, we

can eliminate all those solutions with u^j > rb-^, or Uyj < bb^, or Uyj > tb-^.

3.3.2 Branching Strategy

Let Pgt be the branching subproblem with branching variable Uj. Let c be the number of

branching nodes generated so far. The branching strategy is to find a partition, say, {
Vj<:+i,

...,

Vj<='^} of Vj* and generate nodes Pg‘^'^ ..., Pg'"^^ with Uj restricted to ..., Vj<=+t respectively.

We construct a partition of V:* by partitioning subnetwork Rj^nNg into some components

and let each Vj'^'*’’' be the set of vertices in one such component. If Rj‘ is a nondegenerate

rectangle, we choose to partition it into the grid line segments inside Rj*, so that relatively few but

more different subproblems will be generated. If Rj* is already a grid line segment, we either

partition it into two segments or choose certain subset of vertices inside Rj‘ as the partition.
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The Branching Procedure :

If R/ is a rectangle then

Begin

Partition Rj‘ into Rj'^'^t} with Rj'=+'' a grid line segments inside Rj‘; Let

I { VjS Ng lv;€ Rj®'*'''}, if is a vertical grid line segment,
VjC+k = \

[ { Vj€ Ng lvj€ Rj^+k and Vj is not an if Rj'^+k is a horizontal grid line segment;

intersection point}

Generate with Uj restricted to respectively;

End;

If R;‘ is a vertical grid-line segment [a, b] then

Begin

If the number of vertices in [a, b] is less than a parameter nv, then

generate subproblems each of which has U; restricted to a vertex in [a, b].

Otherwise

Begin

If the length of [a, b] is larger than a parameter Lj then generate two subproblems

with Uj restricted to [a, mp] and [mp, b] respectively, where mp is the vertex in

[a, b] closest to the midpoint of [a, b]

;

Otherwise, generate a subproblem with Uj fixed on a.

End;

End;

If Rj' is a horizontal grid-line segment [a, b] then

Perform partitioning similar to the case when Rj^ is a vertical grid-line segment.

Figure 3.7 illustrats partitions under different cases. Region Ri‘ is partitioned into the grid

line segments inside it and region R2* is partitioned into two segments. Since region R3* is long

enough but contains few vertices, it is partitioned into three components each of which is a vertex

inside R3*. Finally, since the length of region R4* is short enough, only one end point is selected

as the next candidate location. Finally, we see that a subproblem is generated from Pg* by adding

\
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a set of equalities and/or inequalities of (z^j, Zyj) to the set of constraints of Rj*. For later

discussion, we describe the branching strategy in terms of the polyhedrons of Z as the following.

The Branching Procedure :

If, in Rj*, Ib^ < rb-^ and bb^ < tbj'^, then

Begin

With vlji, ..., vljp, (hlyi, ..., hlyq) the x-coordinates (y-coordinates) of the vertical grid lines

(the horizontal grid lines) such that Ib-^ < vl^j < rb-^ < hlyj < tb^^).

Let Rj*+*' = Rj‘n{(z^j, Zyj) I z^j = vl^}, k = 1, ..., p,

VjC+>' = {vj I (Vjj, Vyi) e Rj‘=+''}, k = 1, ..., p;

R.c+p+k ;; Rjtn{(Zjj, Zyj) I Zyj = hlyij}, k = l, ..., q;

VjC+p+k = {vj I (Vjj, Vyj) e Rj‘=+'^, Vj is not an intersection vertex}, k = 1, ..., q;

Generate subproblems •••, Pg‘=‘*'P^ corresponding to Vj=+*, ..., Vj'^+P+^i respectively;

End;
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If Rj‘ = {(z^j, Zyj) 1 a < Zjj < b, Zyj = hlyq for some q} for some a < b, then

Begin

If the number of vertices in [a, b] is less than a parameter nv, then

Begin

WithVj‘ = {V(i), V(p)},

Generate Pg'^'^P corresponding to Vj<=+i, Vj=+P respectively,

where = {V(j^)} (=

End

Else

If the length of [a, b] is larger than a parameter Lj then

Begin

Generate Pg‘=+* and Pg*^"^^ corresponds to Rj'+* = {(z^j, Zyj)la < z^j ^ mp,

Zyj = hlyq} and Rj<=+2 = {(z^., Zyj)lmp < z^j < b, Zyj = hlyq} respectively;

End;

Else

Generate Pg*^'*'* with Rj‘=+* = {(z^j, Zyj) I z^j = a, Zyj = hlyq};

End;

If Rj* = {(z^j, Zyj) I a < Zyj < b, Zjj = vljp for some p} then

Perform partitioning similar to the case when Rj* is a vertical grid-line segment.

3.3.3 The Rectilinear Lower Bounding Problem

Reccdl that for a given subproblem P„^ P^* denotes the lower bounding problem in which all

the underestimates are the rectilinear type. Problem P^‘ can be decomposed into

P„‘: Minimize Kw^jlv^ - z^jl I (i, j)} -i- Kvj^lz^j - z^\ I (j. k)}

z^j e Rjjt,
j not fixed

and

Pyj*: Minimize XiwjjlVyj - Zyjl I (i, j)} + Z{VjijlZyj - Zyj^l l(j. k)}

Zyj e Ryj*, j not fixed.
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Since the two problems are identical except for notation, we only need to study With the

restrictions problem is a multimedian problem on a path network with each

new facility j restricted to a connected subnetwork (an interval)

denote Pr as a class of tree network multimedian problems in which some new facilities are

restricted to subtrees, then is a special case of Pr where the tree network is a path. We will

first give an algorithm, called the restricted search algorithm, to solve Pr, and then show that we

do not need to solve starting from scratch. In the restricted search algorithm, we assume

without loss of generality that each subtree to which a new facility is restricted has all its tip

nodes coinciding with the vertices of the tree network.

The algorithm is a modified version of Kolen's direct search algorithm for tree multimedian

problems. Let RP denote an instance of the restricted multimedian problem defined on a tree

network T, with each new facility j restricted to a subtree Tj. Without loss of generality, we

assume that all the tip points of Tj, j
= 1, ..., m, are vertices of T. First of all, we modify the

optimality condition given by Kolen (1982) for the restricted tree network multimedian problem.

Theorem 3.1 . A vertex solution X to RP is optimal if and only if there is no subset of new

facilities which can be moved to an adjacent vertex such that, a. no restrictions are violated, and

b. the objective value is decreased.

Proof. The necessity is obvious. To prove the sufficient condition, suppose such a solution X is

not optimal. Since all the tips of every restricting subtree are vertices, there exists a vertex-

optimal solution X* to RP. Since both Xj and Xj”^ belong to subtree Tj, the unique path connecting

Xj with Xj* is in Tj. Hence, set C = {Z\Z = XX + (1 - X)X*, 0 < X < 1 } is a feasible solution set to

RP (the convex combination is defined in Dealing et al. (1976)). Since X ^ X*, C contains more

solutions than X and X*. The rest of the proof is the same as that in Kolen (1982). That is, since

C - {X, X*} is non-empty and f(X*) < f(X), there exists an edge e along which we can move a

subset of new facilities from one end point to the other to obtain another feasible solution in C

with objective function value smaller than f(X). This result is contradictory to the sufficient

condition, which proves the theorem. |
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With this optimality condition, we now modify the direct search algorithm given by Kolen

(1982) for the restricted tree multimedian problem. In each iteration of this modified algorithm,

the additional work is to identify two subsets of free new facilities, which must be located

respectively in the two subtrees because of the restrictions. Since the restrictions are on the

distances between existing facilities and new facilities, the identification takes 0(mn) time in

each iteration.

The Restricted Search Algorithm :

Step 0. Let k = 0 and = T, and let the set of free new facilities be FF^ = { 1, ..., n};

Step 1 . If is a single vertex, then place all the remaining free new facilities at the vertex and

terminate the algorithm; Otherwise, go to Step 2;

Step 2. Select a tip vertex, say v^, of T^. Let v^ denote the unique vertex, in T^, that is adjacent to

Vg, and let and be the subtrees containing v^ and respectively, where and are

obtained from T by removing edge (v^, v^) from T. Construct free new facility subsets Qg

and Q( which, by restriction, must be located on v^ and in respectively (i.e. Qg (Qt)

contains the indices of those current free new facilities j
such that there exists a vertex

Vj e Tg (T() with d(vj, v^) > Cy (d(vj, Vg) > Cy), where Cy is the upper bound on d(Vj, Vj);

Step 3. Let P = FF^ \ (Qs'^Qt)- Let X be the location vector with new facilities in QgUP (Qt)

located at Vg (Vt) and all the fixed new facilities located at their designated vertices.

Determine a subset S of P which, when the new facilities in S are moved to Vj, gives the

largest decrease in the objective function. Such a subset S is determined by solving a

maximum flow problem on a directed network of at most n*f2 nodes (Kolen 1982).

Step 4. If SuQ( = 0, then terminate the algorithm since the current solution X is optimal;

Otherwise, fix new facilities in Qs^(P \ S) at Vg, let FF^”^' = QtUS, - { Vg}, and

k = k + 1 . Go to step 1

.

The optimality proof for the restricted search is the same as that given by Kolen (1982).

Compared with the original direct search algorithm, the only additional work for this modified
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algorithm is to determine the subsets Qj and Q, in each iteration. The complexity of this

additional work is 0(n). Thus, the modified algorithm also has complexity O(mn^).

We often do not need to solve starting from scratch. Suppose that P„* is the parent

problem of Pg* and P„* is one of the decomposed subproblem of P/. Recall that Pg' is derived

from PgS by letting c Rxf> ^yj' ^ least one of R^j' and Ryj' is a proper subset. If

R^j* = Rxj‘. then P„* is equivalent to P^r®. If Rxj‘ c; Rj;j*, then we will show in the following

property that we only need to consider a subset of the current unfixed new facilities.

Property 3.4 . Let be an optimal solution to P„®. Suppose R^j‘ = [lbj\ rbj^] c R^j* = [/bf, rbj^].

Case 1 . If z^j* e R^j* then is also an optimal solution to P^*.

Case 2. If rbj^ < z^j* then there exists an optimal solution Z^' to P„* such that = rb-^ and z^‘ =

Zxk® if Zxk® « Zxj*] for any k.

Case 3. If < Ib^ then there exists an optimal solution Z^* to P^/ such that z^j* = Ib^ and z^^^ =

Zxk® if Zxk® [Zxj®. ^^j‘) for any k.

Proof. The conclusion for Case 1 is obvious. Now, we prove Case 2. Let t^j, ..., t^n. txi < ^xi+i*

the vertices of path network T^. Recall that the modified direct search algorithm considers an

edge of Tj in each iteration. In iteration, say h, it finds a tip vertex, say v**, of the current tree

network, say T**, and moves a subset of new facilities to the subtree 7** - {v*>}. We see that both

and Z^* can be obtained by applying Kolen's modified search algorithm to P„* and P„*

respectively with the tip vertices chosen in the order of t^i, t^2 » •••• ^ denote these two

search processes. For the given rb-^, let t„ be the vertex such that t^q = rb-^. Let L = {k I z^j^® <

rb^) and /? = {k I z^* > z^j®}. We see that LfuR = {k I z^* € {rb-^, z^j*] }. Thus, we need to show

that z^‘ = z^s, for any k e LuR.

Since z^j* > rb-^, the new restriction Ib-^ < z^j < rb^ in problem P„‘ does not make the

execution of process P* any different from the execution of process P® until the ^h iteration, for

which tjq (= rb() is the tip vertex. Thus, both processes produce the same locational decisions in

their respective first q-1 iterations. That is, if a z^* is determined in the first q-1 iterations of P®,

then z^‘ is also determined in the first q-1 iterations of P and z^‘ = z^®. Since k e L, is
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determined in the first q-1 iterations of process we know that for any ke L Also,

in each iteration h, 1 < h < q-1, of process P, new facility j is always moved to subtree 7^ ~ { v^}

as it has been moved in P^. At the iteration q of /^, new facility j is fixed at because of

new restriction z^j < rb-^. Thus, we know that z^^j^ = rb^^.

The proof of Case 2 is complete if we can show that z,^^ = for every ke R. This can be

done by applying the direct search algorithm to both problems with tip vertices chosen in the

order t^p, t^p_i» ••• •

The principle of proving Case 3 is the same as that in proving Case 2. |

If Case 2 of Property 3.4 is true, then we have a localization result .or with z^^^ = z^j^^

for k G Lu/?, Zjj^ = and z^i^^ e [rb^\ z^f] for any other k. Therefore, we only need to solve a

multimedian problem defined on the interval [rb-^, z^j^] with new facilities to be those which are

localized to this interval. We can reduce the size of Pj^.^ in the same way when Case 3 of Property

3.4 is true.

3.4 Computational Experience

Generally speaking, if Ng has cells of extreme width-height ratios and the weights

concentrate on these cells, then the corresponding P^ and their subproblems are not good

approximations. At the other extreme, if many of the cells in Ng have width-height ratios close to

1, and Ng is refined (having several grid rows and grid columns), then there should be good lower

bounds. We would like to obtain more concrete and more detailed evidence for this intuition on

the relationship between the approximation quality and the grid network topologies. We also

would like to see the performance of some heuristics, in particular, the intersection optimal

solution. In this section, we will discuss the design of experiment, the heuristic considerations,

and the computational results.

3.4.1 Experimental Design

We select a spectrum of grid networks of various structures. We generate testing problems

by sampling weights {wy} and {vjj^} from populations of uniform distributions Fy and Gjj^ as
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follows. Though, it is simpler to have all Wy identically distributed, an instance generated in this

way often has many new facilities having similar weight distribution patterns . As a result, many

new facilities will coincide. In order to generate more diverse instances, we generate different

(weight distribution) patterns for different new facilities. First, we divide the rectangle into six
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Figure 3.8 Zones and Patterns

rectangular zones as shown in Figure 3 .8a. The weight distribution patterns for two new facilities

are different if, in some zones, the weights of one new facility are statistically larger than that of

the other. Let F = {Fj, F2, F3} be set of three uniform distributions with expectations
|0,i,

1X2, ^,3,

P-i < 1X2 < H3. A distribution pattern is a mapping from zones 1 , ..., 6 to F. Let PA be the set of
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patterns as shown in Figure 3 .8b. For each new facility j, we choose a pattern from PA with

equal probability and generate the {wj:} accordingly. That is, if the distribution in zone / is

designated to be F^, then each weight Wj: in zone 1 is generated from a population having

distribution F^. In actual implementation, F2 is the uniform distribution in [a2, b2] with a2 and b2

given. We let Fy and F3 be the uniform distributions in intervals [max{0 , a2~K}, max{ 1 ,
b2-K}]

and [a2+K, b2+K] respectively, where K = x(b2 - a2)U(0, 1 ) with t a coefficient given. Intuition

and initial experimentation tell us that the algorithm performs relatively well for problems with

large interactive weights {
Vj|^} (tighter bindings among new facilities makes changing a single

location have a greater effect on the objective function. With the algorithm generating

subproblems by changing locations of one single new facility at a time, the tighter the bindings

among new facilities, the earlier the fathoming occurs). In actual implementation, we let Vjk = ai

+ (b3 - aj)(U(0 , 1 ))
3

. The vjj^’s generated in this way tend to concentrate more in the

neighborhood of aj. Asa final note, this zoning approach generate instances which often have

many of the weights concentrated to a subnetwork (a zone). As discussed at the beginning of this

section, the performance of the algorithm will be worse on instances like these. Together with

the approach in generating interactive weights {vjij}, we believe that we take a quite conservative

approach in generating test problems.

3 .4.2 Heuristic Considerations

The algorithm has several important heuristic considerations, in the form of parameters: let

UB be the current best upper bound of Pg and LB(Pg') be the rectilinear lower bound for Pg‘; the

parameters are as:

a The tolerance: Prune Pg‘ when the relative gap (UB - LB(PgO) / LB(Pg*) is less than a;

nv When the number of vertices in R:‘ (the subnetwork to be partitioned to generate

subproblems), is less than nv, the algorithm generates subproblems each has the

branching new facility fixed to a vertex of R:*;
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Lj If Rj' is a grid-segment with the ratio of its length over the length of N„ in the corresponding

dimension less than Lj, then the algorithm only generates two subproblems from Pg* by

fixing new facility j to the two end points of R;‘;

W], W2 The algorithm chooses, among the current active subproblem, a subproblem, say Pg‘,

that has the smallest "chance function value" wj / LB(Pg*) + W2 S(R*) as the next

branching subproblem. Here S(R0 is the number of vertex solutions in the solution

subset R' on which Pg‘ is defined;

Pj, P2 After solving P^S the lower bounding problem Pg*, the algorithm determines whether to

use Heuristic 2, the Neighbourhood One Dimensional Search Heuristic, to find a

feasible solution to Pg‘, depending on whether Pg' is different significantly from its

parent subproblem. The condition to use Heuristic 2 is

(UB - LB(Pgt)) / LB(Pgt) > Pi AND r(zjt, z-) / L > P2

where z} and Z;' are the optimal locations of branching new facility j in Pj‘ and in the

parent problem of P,‘; and L is either the width or the height of Ng (If the above criteria,

is not safisfied, a subproblem is too similar to its parent subproblem. It is unlikely for

the Neighborhood One Dimensional Search to find a significantly better solution).

Figure 3.9 Grid Networks Tested: Average-Case
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Figure 3.9 Continued

Figure 3.10 Grid Networks Tested: Worst-Case
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After initial experiment, we let nv = 8, Lj = 0.1, Wj = 0.1, W2 = 0.9, Pj = 0.3, and P2 ~ 0-3-

We set a differently for different problems, based on the sizes and the topologies of the corres-

ponding problems. These values are shown in columns 1 1 in Tables 3.1 through 3.10. In most

cases, a is zero. The algorithm is sensitive to a and nv, but is not sensitive to Wj and W2

3.4.3 Computational Results

We tested ten different grid networks shown in Figure 3.9 and 3.10. The networks in

Figure 3.9 have the cell width-height ratio close to one for every cell and have more than one

grid-row and one grid-column, while the networks in Figure 3.10 have extreme cell width-height

ratios and have only one grid-row and one grid column. Given that weights are generated in the

same way, the algorithm will have poorer performance for the problems defined on the latter four

networks than for the problems defined on the first six. We call the first six the average-case

networks and the latter four the worst-case networks The algorithm is programmed in C and was

run on a DEC-5000 RISC computer under Ultrix 4.2. The computer has 80 mega-bytes real

memory and has a 20MHz clock which is equivalent to about 24 MIPs. For the average-case

networks, we solved20 instances for each different number of new facilities. For the worst-case

networks, we solved 10 instances for each different number of new facilities. The results are

shown in Tables 3.1 ..., Table 3.10, respectively for the 10 networks. The CPU time is the

average one. The IS, BS, Z*, and U* denote, respectively, the intersection optimal solution , the

best solution found bv the algorithm , an optimal solution of P^. and an optimal solution for Pg .

Column 6 in each table summarizes the percentage of instances which have their best solution

found before the branch and bound stage. That is, they are found either by Heuristic 1 which

solves for an optimal intersection solution or by Heuristic 2, the Neighborhood One Dimensional

Search. Column 7 shows the percentage of instances which have their BS = IS. Since it is well-

known that the optimal locations for a multimedian problem tend to coincide, we include in

Column 8 the percentage of instances in which the new facilities coincide in their BS's. Column

1 1 give the error tolerances. Column 9 and 10 are the relative errors.
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3.4.3. 1. Computational Results for the Average-Case

From Tables 3.1 to 3.6, we see that the algorithm is capable of solving most of the instances

optimally. The algorithm solves a small percentage of instances sub-optimally, especially the

instances defined on network G3 . In G
3
many vertices are in the middle of grid edges - the

locations where the rectilinear distance and the grid network distance differ the most. The

algorithm performs exceptionally well for instances defined on G2 which is quite symmetric (so

that optimal locations are very likely to be the intersection in the middle of the network). This

shows that the algorithm performance is affected significantly by network structures. We are able

to solve problems with non-trivial sizes that have never been solved optimally. The largest

problem has 30 new facilities on grid network G4 of 100 vertices. In all the cases tested, the sub-

optimal solutions are very close to optimal. The most notable is the quality of the optimal

intersection solution. Nearly all the best solutions are optimal intersection solutions. For the

few exceptions, the relative errors between the optimal intersection solution and the best solution

found are too small to bear any significance. Thus, an optimal intersection solution is quite

adequate in general. Finally, the computation time increased considerably when we lowered the

error tolerance. We believe this is because that the objective function of the multimedian

problem has a flat surface, so that there are many solutions having their objective function values

close to each other. A higher error tolerance will make the algorithm ignore insignificant

objective value differences and start early pruning.

3.4.3.2. Computational Results for the Worst-Case

For the instances on worst-case grid networks, the performance deteriorates considerably.

But there are still many instances whose best solutions are found before the branch and bound

stage. In comparison to the lower percentage of instances whose optimal intersection solutions

are the best solutions, we see that Heuristic 2 is useful here. We believe that the lower bounding

problems we propose in the next chapter will be more effective in dealing with problems defined

on the worst-case grid networks.
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CHAPTER 4

LINEARLY CONSTRAINED MULTIFACILITY SUBPROBLEMS AND
THEIR PIECEWISE LINEAR AND CONVEX LOWER BOUNDS

In the history of network location analysis, a common approach is to identify a finite

dominating solution set and devise algorithms to find an optimal solution in such a set. Also,

there is a less developed branch cuid bound approach for some network location problems which

have no known finite dominating set. This approach identifies a particular partition of the

solution set, for which the subproblems associated with the elements in the partition are simpler.

Since the size of the partition is generally very large, branch and bound techniques are used to

find an optimal solution. To our knowledge, this approach has only been applied to problems that

involve distance functions each of which is a function of only one location variable (the type-I

distance). In this chapter we apply this approach to the following multifacility location problem

that involves distance functions of two location variables (type-II distances):

P: Minimize f(X) = c(D(X)).
X 6 G"

Here, G is a cyclic network with m vertices, c is a real-valued non-decreasing convex

function, and D(X) is a vector (. . ., d(Vj, Xj), . . ., d(xj, Xj^), . . .) of distances. Two special cases of P

are the focus of this chapter - the multimedian problem for which c(.) is the sum of weighted

distances, and the multicenter problem for which c(.) is the maximum of weighted distances. We

give special consideration to these two problems on grid networks.

Instead of giving a complete branch and bound algorithm for a given problem, we

concentrate on two important steps - defining solution subsets and hence the subproblems and

developing lower bounding techniques (For later reference, we call these two steps a branch and

bound scheme! . First, we identify a partition of G" such that over each element ofQ all the

distance functions in D(X) are linear. Since Q is very large, we define solution subsets, called

68
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L-sets, each of which is the union of some elements in Q. An L-set is closely related to the

Cartesian product of some n subnetworks of G, and can be represented as a simple polytope in E".

Then, we introduce lower bounding techniques for the subproblems defined on L-sets. The lower

bounding problems are based on some piecewise linear and convex underestimates of the distance

functions in D(X), as well as some piecewise linear and convex underestimates of some

components of c(D(X)) when c{

)

is partially separable. The existence and the approximation

quality of these underestimates depend on the L-sets. The lower bounding problems are linearly

constrained convex programs in general, and are linear programs when c( ) is the sum or the

maximum of distances.

Our study differs from past work in the choice of location problems, the decomposition

strategies, and the subproblems. The notion of using piecewise linear and convex underestimates

is new for multifacility network location problems. We believe that our approach is also useful

for those multimedian type location problems, since their having dominating finite sets of

solutions (the n-fold Cartesian product of the vertex set) has not been known to be utilized in

developing any practical optimal algorithms. The existence of dominating solution set certainly

should be taken into consideration in designing a detailed branch and bound algorithm for the

multimedian type problems.

Throughout this chapter, we will use PLC to refer to piecewise linear and convex. We also

provide a glossary of notation in Appendix B.

Now, we give our motivation . Two major difficulties in continuous cyclic network location

problems are the non-convexity of the distance functions and their lack of unique analytical form

over domains larger than Cartesian products of edge(s). The first difficulty inhibits fmding

efficient optimal graph-theoretic algorithms. The second difficulty inhibits formulating the

problem and its subproblems as mathematical programming problems in E*'. The material

presented in this chapter is the first step to tackle these two difficulties. For problems defmed on

general cyclic networks, the B&B scheme proposed here is useful when the number of new

facilities is small. It is particularly useful for those problems, such as the multicenter problem.



70

which have no known finite dominating set, and therefore no known optimal algorithms. With

some specialization, the approach given in this chapter will lead to practical B&B algorithms for

problems defined on grid networks. Efficient algorithms are expected for the grid-network

multimedian and the multicenter problems, which are important location problems having many

potential applications in manufacturing, urban planning, and transportation.

The insight for why this scheme should be relatively efficient for the grid-network

multimedian and multicenter problems is the following. First of all, from Chapter 3 we see that

the rectilinear distances are poor underestimates only when the grid network is sparse (i.e. the

grid network has few grid rows and columns). In this case, the grid network can be partitioned

into a few components, each of which corresponds to a segment in some grid line. A B&B

algorithm thus only needs to consider relatively few subproblems. More importantly, a

subproblem with some location variable restrictions (such as some variables restricted to some

grid lines) has PLC underestimates of some components of the objective function. These

underestimates approach quickly towards their originals in the process of decomposition. The

lower bounding problems are linear programs and their sizes can be kept from growing too large

by sacrificing certain degrees of quality. On the other hand, when the grid network is "dense", we

can solve the problem in two stages. In the first stage, we use another B&B algorithm, which

only uses the much easier rectilinear lower bounding problems as in Chapter 3, to find a series of

initial solution sets. In each such initial solution set, some "important location variables" are

restricted to a few segments of some grid lines. In the second stage, we use the B&B scheme

discussed in this chapter to find the best solution inside each of the initial solution sets.

For an overview of this chapter, in Section 1, we introduce some notation and give several

examples to highlight principal ideas. In Section 2, we review past results. In Section 3, we

define the partition Q for a cyclic network. In Section 4, we consider multifacility location

problems defined on general cyclic networks. In Section 5, we discuss special treatments for

problems defined on grid networks. In both Sections 4 and 5, the solution subset S is formally

defined, and some technical problems of representing and operating on such a subset are
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discussed. Procedures for constructing PLC underestimates under various conditions are given.

Some techniques for reducing the sizes of lower bounding problems are also discussed. Section 6

summarizes the results.

4. 1 Notation and Examples

As a convention, an edge e with vertices u and w is always expressed as (u, w) if u has a

smaller index than w. Let [e] and [u, w] both denote the set of points in an edge e = (u, w)

including u and w. An arbitrary point x in [u, w] is represented by f(x) — the length from x to u

along edge (u, w). With t( ), [u, w] is an ordered set. Let CL denote a segment of some edge e,

so that [CL] is a subset of [e]. To simplify, we use CL itself to refer to both the segment and the

set of points in the segment. With t, there is a one-to-one mapping between a point-vector subset

S = {(xj, ..., Xp) I X; e CLm, j
= 1, ..., p} in Gp to a vector subset r(S) = {(t(xj), ..., t(Xp)) I (xj, ...,

Xp) e S} in Ep. Thus, we can apply the concepts of Euclidian space to S. For example, a vector

(xj, . . ., Xp) is an extreme point of S if (Kxj), . . ., t(Xp)) is an extreme point of t(S). A hyperplane

in S involving variables Xj, ..., Xp is in fact a hyperplane in E" involving variables t(xi), .... K^p)-

With t, we define distance functions as real-valued functions on subsets of E". With point-

wise location variables x and y restricted to two edges, say (u(x), w(x)) and (u(y), w(y)), the

distance function d(x, y) on [u(x), w(x)] x [u(y), w(y)] corresponds to a real-valued function of

t(x) and t(y) on t([u(x), w(x)] x [u(y), w(y)j). We will study type-II distance function d(x, y) in

more detail in Section 4.3. We now consider the special case of d(x, y) — the type-I distance

function, when either x or y is fixed at a vertex, say v. Assume that y is fixed at a vertex v and x

is in [u(x), w(x)]; It is well-known that

d(v, x) = min(d(v, u(x)) + r(x), d(v, w(x)) + t(w(x)) - r(x)} (4.1).

now, d(v, x) is the minimum of two linear functions of r(x) so that it is either linear or is of a

"roof-top" shape and so is concave. The antipodal point v» of v (on edge (u(x), w(x))) is the point

where d(v, x) reaches its maximum in [u(x), w(x)]. The function d(v, x) is linear in [u(x), v®] and

[v®, w(x)] respectively. In general, on each edge, there is exactly one antipodal point for every
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vertex (Hakimi, 1964), so that there are at most m distinct antipodal points on an edge. An edge

then consists of at most m-1 segments over each of which all the type-I distance functions are

linear. These segments are called linear segments (Hooker, 1986, 1989).

Example 4.1 . Consider the network in Figure 4. 1 . Table 4. 1 gives the labels and the lengths of

edges, and the antipodal points in the interior of each edge.

Table 4. 1 Labeling Edges and the Antipodal Points

Edges Labels Length Antipodal Points in the Interior

(Vi, V2) ei 6

(Vi, V4) e2 6

(V2. V3) 63 6

(V2. V4) 64 12 vj4 (r(vi
4
) = 6), V3-* (r(v3‘*) = 6), vj^ (Kvj^) = 7 )

(V2, V5) 65 8 V45 (r(v45) = 3)

(V3, V4) ^6 6 V56 (rCvjfi) = 1)

(V3, V5) e? 14 Vi^ (f(vi
7
) = 8), {tiv-iJ) = 8), it(y^) = 9)

(V4. V5) eg 10 Vj8 (r(v,8) = 9), Vj* (f(V2*) = 3 )
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Figure 4.2 depicts the graphs of type-I distance functions d(v;, x), x e 07, for all 1 . We see that

edge e-j can be partitioned into linear segments [V3, V2^], [v4‘^, V5].

Figure 4.2 Examples of Linear Segments and Type-I Distances over an Edge for the Network of

Figure 4.

1

Example 4 .2 . Type-II distances have similar properties. Figures 4 .3a to 4 .3d depict the contour

sets of d(zj, Z2) over domains ejXe7, ejXeg, 04X07, and 04X03. We see that dfzj, Z2) is piecewise

linear and concave over its respective domains. Figure 4 .3e depicts the contour set of d(zj, Zj)

over OgXOg. In this case, d(Zi, Z2) is PLC. For all these cases, we can partition each CpXCq into at

most four regions over each of which d(zj, Z2) is linear. For example, we can partition 04X03 into

LRx = {(zj, Z2) I z, € 04, Z2 e eg, t(Zi) - KZ2) ^ t(v/) - t(v2^)} and

L/?2 = {(zi, Z2) I zi G 04, Z2 G eg, r(zj) - r(z2> < t(v4^) - r(v2*)}.

Over L/?i, dfzj, Z2) = 12 - r(zi) + r(z2), and over LR2 dfzj, Z2) = 18 + t{z{) - t{z^.

The fact that both types of distance functions are linear under proper restrictions motivates

us to partition into subsets such that over each subset all the distance functions are linear.
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Decreasing Direction Decreasing Direction

(a) (b)

(c)

Figure 4.3 Contours of d(zi, Z2)
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(d) (e)

Figure 4.3 Continued

Example 4 .3 . (Partition)

Consider a 2-facility problem defined on the network in Figure 4 . 1 : P: Minimize {c(D(X)) I

(x,, X2) e e4Xeg}, where D(X) = (d(vj, x,) ..., d(v5, Xi), d(vi, X2), .... d(v5, X2), d(xj, X2)). From

Example 4 . 1 , the linear segments in the two edges e4 and eg are

e4 ; Li = [V2. v, 4] L2 = [vi^, vj-*] L3 = [vj^, V4];

eg: L4 = [V4, V28] L5 = [v28, Vi*] L6 = [v,8, V5].

The initial partition e4Xeg is {LpXLqIp = 1 , 2 , 3 , q = 4 , 5 , 6}. Over each LpXLq , all the type-I

distance functions are linear. From Figure 4 .3d, d(xi, X2) is nonlinear over L1XL5 and L^xL^-

Also from Figure 4 .3d, LjXLj (L^xL^) can be further partitioned into two subsets (L|XL5)nL^i

and (LjXL5)oL/?2 (L2xL()nLR2), where LR^ and LR2 are given in Example

4 .2 . Over all these latter four subsets, d(xj, X2) is linear. Thus, the final partition of e4Xeg is Q =

{LjXL4, (LjXL5)oZ/7?j, (LjXL5)oZ//?2, LjxLg, L2XL4, L2XL5, (L2xLg)oZ.i?2, L3XL4,

L3XL5, L3xLg}. For any S € Q, subproblem Minimize {c(D(X))IX e S} is a convex

programming problem, since D(X) is linear, and S is linearly constrained.

It is computationally impossible to solve problems of nontrivial size by solving every

subproblem. The next example shows the effect of implicit enumeration in reducing the number

of subproblems actually solved and gives insight into what our PLC underestimates are.
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Example 4.4 . (Implicit Enumeration)

Consider a 2-multicenter problem defined on the network in Figure 4. 1

:

P: Minimize max{fi(xi), f2(x2), 3d(xi, X2) I (xj, X2) e G^' = (ejUe4)x(e7Ueg)},

where fj(Xj) = max{Wijd(Vi, Xj), i = 1, 5}, j
= 1, 2, with w^'s listed below

i= 1 2 3 4 5

Wji 12 12 1 ''12 = 3

Wj2 2 12 12.

Suppose that, by some heuristic, we have an initial feasible solution to P with Xj° = Vj, X2° =

V4, where f(X0) = 20. Table 4.2 summarizes the implicit enumeration process.

Table 4.2 Subproblems and Their Lower Bounds

LB Solution Subsets

p» 26 S^ — e^xe7

P2 18.46 S2 = e,xeg

P3 26 S3 = 64Xe7

p4 16 S'* = e4Xeg

P5 19.2 S5 = |e,xeg,r(xi) + r(x2) <9}

p6 26.7 S6 = {ejXeg, r(xi) + t(x2) > 9}

P2 16.5 S2 = (e4xeg, r(x,) - r(x2)
> -3}

p8 26.7 S« = (e4xeg, r(x,) - r(x2)
< -3}

Improved Solution to P

xji 6 e,, r(x,i) = 0,

X2* e eg, t(x2*) = 0.4

f(Xi) = 19.2

Xi^ e e4, t(xj2) = 8.25

X2^ e eg, t(x2^) = 1.75

f(X2) = 16.5

Decomposition

Fathomed

p5,p6

Fathomed

p7,p8

Fathomed

Fathomed

Fathomed

Optimal

Fathomed

As in Table 4.2, we partition G' into subsets ejXe7, ejXeg, t4Xe-j, and e4Xeg. The

subproblems are Pi, ..., P^. Figures 4.4a to 4.4d show, respectively, the graphs of fj(Xj), j
= 1,2,

with Xj in the edges. Figures 4.3a to 4.3d showed the contour sets of dfxj, X2) over the four

subsets. Since min{f2(x2)lx2e 67} = 26 > f(X°), subsets eiXC7 and e4xe7 are discarded. The lower

bounding problem Pl^ of P^ is derived as follows: over ej, fi(x,) = max{ 14 - 1{\{), 12 + 2r(xi)} is

PLC; over eg, f2(x2) is not convex, but we use the PLC supporting plane p/(x2) = max {20 - t(x2),
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1.5r(x2) + 13} as an underestimate. Function d(xi, X2) over eiXeg is not convex either. We use a

PLC underestimate d(xj, X2)“ = max{r(xi) -0.4r(x2) + 6, -r(xi) + 0.8r(x2) + 6}. The first function

in d(X[, X2)“ is the linear plane in passing through points A = (r(vi), ^(''4), dfvj, V4)), B = (t(v2),

f(v4), d(v2, V4)), and C = (r(v2), ^vj), d(v2, V5)), and the second function in d(xi, X2)“ is the linear

plane in passing through points B, D = (r(vi), d(vi, V5)), and C. Thus,

Pl^: Minimize z

s.t. max{ 14 - r(xi), 12 + 2/(xj)} < z

max{20 - r(x2), 1.5r(x2)+ 13} <z
3 max{r(xi) - 0.4r(x2) + 6, -r(xj) + 0.8r(x2) + 6} < z

0 < r(xi) < 6, 0 < r(x2) < 10, z > 0.

Figure 4.4 The Graphs on Edges
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To decompose P2, we partition eiXeg to improve the approximation of d(xi, X2). Set eiXeg

is further partitioned into and with hyperplane r(xj) + r(x2) = 9. Note that this hyperplane

coincides with the line segment in ejxeg, on which d(xi, X2) reaches its maximum inside ejXeg.

Also note that d(X[, X2) is linear over and S^. Thus, the lower bounding problems for and P^

are obtained by using the same PLC underestimates on fifxj) and f2(x2) as in Pl^.

After deriving similar PLC underestimates for Pl'*, we have

Pl'^: Minimize z

s.t. max{24 - t(xi), 0.6667r(xi) + 9.78, 2r(xi)} < z

max{20 - KX2). 1.5r(x2) + 13} < z

maxj-r(xi) - 0.4r(x2) + 12, 0.1667r(xi) + (X2)
- 2} < z

0 < /(xj) < 12, 0 < r(x2)
< 10, z > 0.

We partition e4Xeg into and LR2 as given in Example 4.2. We have shown in Example 4.2

that d(xj, X2) = 12 - r(xi) + r(x2) for any (xj, X2) e LR^ tuid d(xj, X2) = 18 + r(xi) - t(x2), for any

(xi, X2) e LR2 .

From the above example, we see that for multifacility problems on general cyclic networks,

the PLC lower bounding problems usually are not available without stringent conditions (e.g.

each variable must be restricted to an edge). This is not the case for problems on grid networks .

13 12 11 10

Figure 4.5 A Grid Network
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Grid network distances have rectilinear distances as universal PLC underestimates. In case the

rectilinear underestimates become inadequate, for example when a grid network is sparse, we can

construct other PLC underestimates which have much better approximation and require less

restriction. In the following several examples we emphasize the difference in the approximation

quality between the rectilinear underestimates and the new PLC underestimates that we will

formally introduce later in this chapter.

Example 4 .5 . Let N„ be the single cycle grid network shown in Figure 4.5 (The edge lengths are

marked beside the edges in the figure). Let vl^, vl^ hl^, and /i/, denote, respectively, the left

vertical, the right vertical, the bottom, and the top horizontal grid lines (v/[ contains vertex V15).

A point on Ng has a coordinate (u^, Uy) in E^.

20

16

12

8

4 8 12

Figure 4.6 The Graphs of d(v3, u) and r(v3, u)

Figure 4.6 depicts the graphs of d(v3, u) and the rectilinear distance r(v3, u) as u is restricted

to hly We see that over any interval [a, b] in /i/,, the linear supporting plane of d(v3, u) over that

interveil is a better underestimate than r(v3, u). As for the type-II distance, consider d(ui, U2) and

r(uj, U2) as Uj and U2 are restricted to hl^ and hl^ respectively. Since Uyj and Uy2 are fixed (at 0 and

9), d(uj, U2) and r(uj, U2) are functions of u^i and u^2» i ®- d(uj, U2) = 5^(Uxi, Ux2) + 9 and r(ui, U2)

= lUxi - Ux2l + 9 . Figures 4 .7a and 4 .7b depict the contour sets of 5x(Uxi, Uj2) and lu^i - Ux2l

respectively. Let S = [Ib^, rb{\y[lb2, rf>2]. with [Iby rb^ an interval in EL We see that lu^i - Ux2l
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Decreasing Direction

Figure 4.7 The Contours of d(uj, U2) and r(uj, U2)

is not a good underestimate of 6x(u^j, u^2) if S is large or S is in the interior of x /i/,. In this

case, it is possible to construct a PLC underestimate of 0^2) as follows. Let p/i(u^i, 0^2)

the linear function corresponding to the linear plane in passing through points A = (lb lb2 ,

/Z?2)). B = ('^
1 . lt>2 , lb2)), C = (rb^, rb2 , 5x(ri>i, r&2))’ Ph^^xX^ “x2) linear

function corresponding to the linear plane passing through points A, D = (/Z?j, r&2. 5x(/&i, rb2)),

and C. Then, as we will show later in this chapter, p/(Uxi, Ux2) = max{p/j(Uxi, Ux2), p/2(*^xi» “x2))

is an underestimate of Ux2). For example, with lb-. = 4,rb:= 10, j
= 1,2, p/fu^i, 0^2)

=

max{Uxi - Ux2 + 8, -u^i + 0^2 + 8}. The function p/(Uxi, 0^2) over [4, I0]x[4, 10] is considerably

better than lu^i - Ux2 l, as shown in the following;

(Uxi, Ux2> (4, 4) (10, 4)

dx(Uxi. Ux2> 8 14

p/(Uxi, Ux2) 8 14

lUxi - Ux2l 0 6

(10, 10) (4, 10)

8 14

8 14

0 6

(7, 7) (8.5, 5.5) (8.5, 8.5)

14 14 11

8 118
0 3 0.

In the following two examples, we will show that under some circumstances, we can find

much better PLC underestimates for the objective function.
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Figure 4.8 Distance Function Graphs
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Figure 4.8 - Continued
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Example 4.6 . Let P be a multimedian problem: Minimize Xjfj(Uj) + fNN(ui, U2 , U3) defined on the

grid network Ng in Figure 4.5. The randomly generated weights are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Wil 24 23 9 22 21 10 49 52 72 71 26 16 12 8 17 12 Vi 2 = 21, Vi3= 10.

Wj2 46 45 27 36 30 23 38 31 41 12 25 19 23 43 49 13 V23 = 3

Wi3 42 16 15 18 22 11 25 23 17 23 26 35 48 47 12 45

Let hj(Uj) denote the function derived from f:(Uj) by replacing grid network distances with

rectilinear distances. Figure 4.8 depicts the graphs of fj(Uj) and hj(u:), j
= 1, 2, and 3, as uj moves

along the grid lines. Notation hl(b), hl(t), vl(l), and vl(r) in the fiugres respectively indicate that

the corresponding figures depict the graphs with U: restricted to the bottom, the top, the left

vertical, and the right vertical grid lines. We see that when U: is restricted to a grid line, it is

better to approximate fj(Uj) with its PLC supporting plane than to use h:(Uj). Also note that a PLC

supporting plane approaches quickly to its original as the interval restriction gets smaller. In

contrast, the function hj(uj) does not approach fj(Uj). Through using, whenever possible, these

PLC underestimates, in conjunction with the PLC underestimates of type-II distances discussed in

Example 4.5 and the rectilinear underestimates, in a B&B process similar to the one discussed in

Chapter 3, we solved P eifter examining 54 subproblems. If only use the rectilinear lower bounds,

the B&B process needs to examine 256 subproblems before finding an optimal solution.

Example 4.7 . Consider a 2-facility multicenter problem P: Minimize f(ui, U2) = max{max{fj(Uj),

j
= 1, 2} fNN(uj, U2)} on the grid network Ng in Figure 4.9, with randomly generated weights

1 2 3 4 5 6 7 8 9 10 11 12

Wj, 6 6 3 3 6 6 7 9 7 8 3 9 Vj 2 = 20
wj2 9 6 8 2 5 10 3 7 9 3 6 6 .

Figure 4.10 depicts the graphs of fj(Uj) and h:(Uj) as U; moves along the grid lines. We see

that the PLC supporting planes of fj(Uj)'s are better underestimates. Note that the graph of each

fj(Uj) is either close to its PLC supporting plane, or consists of only a few linear segments. Thus,

with some knowledge of the graphs, we can design proper branching heuristics to force the PLC

supporting planes to quickly approach their originals. We used these underestimates, in

conjunction with the rectilinear underestimates and the PLC underestimates of type-II distances.
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Figure 4.9 A Grid Network

to solve problem P after examining 18 subproblems. The lower bounding problems are all linear

programs. With some preprocessing procedures discussed later in this chapter, we only needed to

solve 12 linear programs, the largest of which had 10 constraints and 6 variables.

In summary, we introduced the notion of decomposing the solution set into subsets in

which distance functions are linear. We demonstrated through examples the effectiveness of

some PLC underestimates. The rest of this chapter is a formal exposition of the approaches

shown in the examples.

Figure 4.10 The Graphs of f and h
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Figure 4.10 Continued

4.2 Review

Hooker (1986) used decomposition to solve a class of nonlinear single-facility network

location problems. In Hooker (1989), he extended this approach to a class of nonlinear

multifacility problems which involved only the type-I distance. Both works are based on the

following observation.

Observation 4.1 . (Hooker 1986)

Let (u, w) be an edge ofG and let Sq, Sj, . . . Sj^ be the distinct antipodal points on the edge with Sq

= u and Sjj = w, r(s,) < t(Sj+i) for i = 0, . . ., k-1 . Then, in each linear segment [s,, s,^.j], i = 0, . . .,

k-1, all the shortest distance functions d(v, x) are linear.

Hooker (1986) considered a nonlinear single facility network location problem with an

objective function of type-I distances — f(d(vj, x), ..., d(v„, x)). He proposed decomposing

into subproblems each of which is defined on a linear segment. Since all the shortest distance
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functions are linear on a linear segment, each subproblem is a convex optimization problem if the

function f is convex. A subgradient type lower bound for on a given edge, and a domination

relation among subproblems are given. An implicit enumeration algorithm is developed, which

combines the lower bounding technique and the domination relation. Hooker (1989) extended

this approach to the following nonlinear multifacility problem;

P^: Minimize {f(d(vi, X), ..., d(v„, X)) I X e G"}

where f is a real-valued convex function on R“ and d(vj, X) = min{d(Vj, Xj), ..., d(v„, x„)}.

Similar to the previous result, he proposed decomposing into subproblems each of which is

defined on a multi-set , which is an n-fold Cartesian product of n linear segments. To have an

explicit d(Vj, X), each vertex is assigned to a designated closest location variable; the multi-set is

further decomposed into subsets for different vertex-variable assignments. A further attempt is

made to reduce the number of subproblems actually solved by considering directional

subgradients at every extreme point of an edge-set (a set in which every new facility variable is

restricted to an edge).

4.3 An L-Partition of G" and the Subproblems of P

In this section, we introduce a so-called L-partition Q of G" such that over each element of

this partition both types of distances are linear. After defining fl, we will define a specific type of

subproblems of P that are useful in many implicit enumeration algorithms. Such a subproblem is

defined through defining the corresponding solution subset.

4.3.1 The Tvpe-II Distances

Hooker, Garfmkel, and Chen (1991), discussed the topology of a type-II distance function

without giving any explicit form of the function. Since our results build upon the topology of

type-II distances, we now discuss some properties of type-II distances.

Consider dfzj, Z2) over epXe„ for two arbitrary edges ep = (U[pj, w^pj) and e^ = (U[qj, W[qj). A

shortest path connecting Zj and Z2 may contain end-points u^ and/or Wjj depending on the

locations Zj and Z2 represent. Thus, d(zj, over CpXeq has the following expressions;
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If p ^ q then

d(U[p], U[q]) + r(Zi) + t(Z2),

d(W[p], U,q,) + f(Wrpi) - r(z,) + f(Z2),

d(zi, Z2) = min{ } (4.2);

d(U(p]. W[q]) + t(z,) + - t{Z2),

d(W[p], W[q]) + t(W[p]) - r(z,) + r(W[q]) - r(Z2)

if 0
p
and Cq are the same edge, say (u, w), then

d(u, w) + r(zi) + f(w) - t(z2)

d(zj, Z2) = min{ It(zi) - r(z2 )l } (4.3);

d(u, w) + r(w) - r(zi) + ({zq)

in particular, if (u, w) is a shortest path between u and w, then (E4.3) becomes

d(z,, Z2) = lt(z,) - r(z2)l (4.4).

For (4.2), d(zj, Z2) is the minimum of four linear functions, so that it is piecewise linear and

concave. For (4.3), d(zj, Z2) is the minimum of 3 convex functions and is neither concave nor

convex, but in its special case (4.4), it is PLC. We can express d(zj, Z2) explicitly as the

following.

Let U[q]P and w^p (w^pj^i, Ujpj'i) be the antipodal points of u^qj and w^qj (u^pj and W[pj) on

edge ep (eq) (From Hooker, Garfinkel, and Chen (1991), t(W[qjP) < t(U[qjP) if and only if tlwjpj*!) <

KUfpjq) and lt(U[q
3
P)-r(W[q]P)l = lt(U[p]<t)-r(W(pj‘i)l)

Case la. p q, t(W[qjP) < t(U[q]P) and t(W[pjq) < t(U[pf).

d(Ufp], U[qj) + r(zi) + r(z2)

d(W[p], U[qj) + r(W[p]) - f(zi) + r(z2)

d(zj, Z2) = 1

d(U[p], W{qj) + r(Zi) + t(W[qj) - t{7^

. d(W[p], W[qj) + r(W[p]) - t(Zi) + t(W[qj) - KZ2)

If Kz,) < r(U[qjP), /(Z2) ^ t(U[p]‘t), and

r(z,) + t(Z2)
< t(U[q]P) + t(W[p]<t)

If r(zi) > t(U[q]P) and r(Z2) < r(W[p]‘»)

If r(zi) < t(W[q]P) and tiz^) > KU[pf)

If t(zi) > t(W[q]P), t(z2) > t(W[p]<i), and

r(zi) + r(z2) > Ku[q]P) + t(W[pjq);

Case lb. p q, t(U[qjP) < t(W[q]P) and t(U[p]<t) < t(W[p]<t)

d(U[p], W[qj) + r(Zi) + t(W[q]) - t(Z2)

If Kzi) < t(W[q]P), t(U[p]^)^(Z2)^(W(qj),

and r(zi) - t{z2) < t(U[q]P) - t(U[pf

)

d(zi, Z2) = i

d(U(p], U[qj) + r(zi) + r(z2)

d(W[p], W[qj) + t(W[p]) - r(z,) + r(W[q]) - t{Z2)

If t(zj) < t(U[q]P) and t{z2) < t(U[p]‘i)

If t(W[q]P) < t(zi) and < t{z2)

d(W[p], Ufq]) + t(W[p]) - r(Zi) + t(Z2) If r(U[q]P) < r(Zi), /(Z2) ^ KWfp]'!),

and r(zi) - r(z2) > KU[q]P) - t(U[p]‘i);
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Case 2a. e- = Cq = (u, w), and edge (u, w) is not a shortest path between u and w.

Let u' and w' be the antipodal points of u and w respectively on edge (u, w), we have

f d(u, w) + r(zi) + f(w) - r(z2>

d(zi, zj) =
\
It(zi) - r(z2)l

ld(u, w) + f(w) - r(zi) + t(z2)

If r(Z]) < t(w') and r(z2) t t(u')

o/w

If t(Z|) > f(u') and 1(22) ^ f(w');

Case 2b. e_ = e^ = (u, w) and (u, w) is a shortest path between u and w.

d(zi, Z2) = lt(zi) - r(z2)l.

As an example, the d(zj, Z2) with Zj e e4 = [v2, V4] and Z2 g e7 = [V3, V5] in the network of

Figure 4 . 1 , has the following explicit form

d(zi, Z2) =

'

d(V2, V5)+r(Zi)+f(V5)-r(Z2)

d(v2, v5)+r(zi)+r(z2)

d(v4, v5)+r(v4)-r(zi)+r(v4)-r(z2)

d(v3, v4)+r(v4)-r(zi)+r(z2)

r(zi) < Kvg^), r(v27) < t(z2) < Kvj), and

r(z,) - r(z2) < t(v3^) - r(v2’)

r(zi) < t(v3'‘), t(z2) ^ t(y2^)

Kvj^) ^ r(zi) < KV4), r(v2^) < r(z2> < rfvj)

r(v34) < r(zi) < r(v4>, r(z2> < tiv2’’), and

r(Z,) - KZ2) ^ KV3^) - t(V2'^)-

— <

18 + r(zi) - t{z2) t{z{) < 7 , 8 < t(z2) - r(zj) - r(z2) ^ -2

6 + r(zi) + KZ2) t(zi) ^ 6, r(z2) < 8

36 - t(zi) - t(z2) 7 < t(zi) < 12 , 8 < KZ2) ^ 14

I 18 - Kzi) + t(z2> 6 < t(zi) < 12, r(z2) ^ 8, and t(zi)
-

1(22) > -2.

Figure 4.1 la and Figure 4.1 lb give the conceptual contour sets of d(zj, Z2) for Case la and

Case lb. The set of points at which d(zj, Z2) reaches its maximum over CpXeq form a line segment

Lfj. Points (U[q]P, and (wjqjP, Ujp]*!) are end points of this line segment and are, therefore,

used to define this line segment.

For Case la,

Lh = {(Zi, Z2) G epXeq I r(Z,)+r(Z2) = KU[q]P)+t(W[p]‘l), r(WfqjP)^Zi)^U{qjP), r(W(p]q)<r(Z2)^t(U[p]‘l)}.

and for Case lb,

Lh = {(zj, Z2) G epXeq I r(zi)-r(z2) = t(U[q]P)-t(U[p]<i), r(U[qjP)</(zi)^(W[q]P), r(U[p]‘i)^(z2)^(W[pj‘i)}.
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Figure 4.1 Ic gives the conceptual contour set of d(zj, Z2) for Case 2b. The set of points at

which d(zi, Z2) reaches its minimum over CpXe^ form a line segment Ll. Points (U[pj, U[qj) and

(W[pj, W[q]) are the two end points of Ll, so that Ll = {(zi, Z2) g CpXCq I f(zi) - 1(22) = 0}.

w

(a) Case la

(b) Case lb

Figure 4.11 Contours of d(zi , Z2)
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(c) Case 2b

Figure 4.11 Continued

Finally, we make the following two assumptions about a cyclic network for the rest of this

chapter. First, due to the following Property 4.0, we always assume that every edge in G is a

shortest path between its two end points .

Property 4.0 . If function c in P is non-decreasing, then there is an optimal solution to P with each

new facility either on a vertex or in an edge which is a shortest path between its two end points.

Proof . See Appendix B.O.

Second, since d(Zj, in Case la and Case lb are symmetric, to simplify exposition,^
assume that when Z

i
and Zo are restricted to two different edges. Case la is always true -

4.3.2 Linear Regions

Set epXe„ can be partitioned into subsets by some half-planes. When ep ^ eq, let be the

hyperplane coinciding with the L^ in Figure 4.1 la, so that Hpq = {(zj, Z2) € CpXeq lr(zi) + r(z2)
=

r(U[qjP) + tfWfpjq)}. Let half-planes = {(zj, Z2) e epXeqlr(zi) + tiz^ < t(U[q]P) + t(W[pj<t)} and

//pq+ = {(zj, Z2) e epXeqlf(zj) + t{z^ > t(Z[qjP) + t(W[p]<t)}. The CpXeq thus can be partitioned into
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Figure 4.12 The Linear Regions

{(zi, Z2) e epXeq I 0 < r(zi) < f(U[qjP), 0 < r(z2>
< ^(Ufpjq)} n Hp^~,

{(z,, Z2) e epXeq I f(U[q]P) < Kz^) < r(wyj), 0 < r(z2)
< f(W[p]q)},

{(z„ Z2) e epXeq I r(WfqjP) < r(zi) < r(W[pj), f(W[p]q) < t(z2)
< r(W[q])} n

and { (zj, Z2) e epXeq I 0 < r(zi) < r(Wfq]P), t(%f) ^ t(z2)
< Kw^qj) }

.

These four sets define, respectively, the regions A, B, C, and D shown in Figure 4.12.

If ep = eq, let ^pq = {(z,, Z2) e epXeqlr(zi) - t(z2) = 0}, //pq+ = {(z,, z^ e epXeqlr(zi) - r(z2>

> 0} and Hpa~ = {(zj, Z2) e epXeqlrfzj) - r(zj) < 0}. Here, hyperplane coincides with line

segment Ll. The set CpXeq can be partitioned into //pq+ and Wpq“, which correspond to the upper-

left and the lower-right triangles in CpXeq.

We call these regions the linear regions , since over each such region, d(zi, z^) is linear.

4.3.3 Partitioning G" into Linear Sets

With the linear segments for type-I distances and the linear regions for type-II distances, we

can decompose G" into finitely many linear-sets by combining the two structures. First, G" is

decomposed into edge-sets each of which has every new facility variable restricted to an edge.
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For a given edge-set, let erj] denote the edge to which Xj is restricted, let denote a linear

segment in enj, and let ^n][k] denote a linear region in set e|j]Xe|ij]. A linear-set is

LS = {X e G"lxj € Z(j], for all j, (xj, Xj,) e for all j < k}.

Then, the L-partition Q of G" is the set of all the nonempty linear-sets .

As for the number of elements in Q, since in each edge there are at most m distinct

antipodal points for a network of m vertices, there are at most (m-1) linear segments in each

edge. There are at most (lEI(m-l))" different ways to assign Xj's to linear segments, so that there

are (IEI"(m-l)") different tvpe-I linear-sets , where a type-I linear-set is a subset of an edge-set, in

which every X: is restricted to a linear segment. For a type-I linear-set S, let NL be the set of

location variable pairs (j, k) such that d(x:, X)j) is nonlinear over S. We see that in S, (xj, Xj^) is

restricted to where X{] is the corresponding linear segment. If d(xj, Xj^) is nonlinear, from

Figure 4.1 la and Figure 4.11c we see that is shared by two linear regions of e^j^xe^j^j.

Thus, we further decompose a type-I linear-set into at most 2'nl' linear-sets by restricting each

nonlinear new variable pair to one of the linear regions. All together, the total number of linear

sets is 0(IEI“(m-l)“2rin+iV2). On average, the number of linear sets is much less than this worst-

case estimate because the number of distinct antipodal points in an edge should be much less than

the worst-case and the number of nonlinear variable pairs in a given type-I linear-set is much less

than the worst-case estimate n(n+l)/2.

For the multifacility problem P: Minimize {f(X) = c(D(X)) I X e G“}, let LS be a linear set

{X € G"lxj 6 [S|j], S|j+i]] c e^j], for each j, and (xj, Xj^) e fo*” every j < k}, and let P' be the

subproblem of P defined on LS. We can formulate P' as mathematical, programing problem.

Over LS, any type-I distance d(vj, Xj) can be expressed as a linear function ajjffXj) + Py, where ay

e {-1,1} and Py is a constant; any type-II distance function d(xj, Xj^) can be expressed as a linear

function Pjkt(Xj) + + Tjjij, where pjj^, e {-1,1}, and Tiji^ is a constant. The constraints

defining LS are the following: For each j, linear segment {sy^, Syj+i] corresponds to constraints

t(Sy]) < t(Xj) < t(sy]+i); For each (j, k), j < k, linear region L/?y]yjj corresponds to a constraint

aji;jr(Xj) + ajjj'^rfxij) < bjj^, where ajj^*^ € {-1,1}. Thus
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P’: Minimize c( . . . OjjKXj) + PjkKXj) + M-jicKx^) + Tljk, • • •)

S. to ajk*KXj) + ajk'‘t(Xk) ^ Ojk for each (j, k)

< r(Xj) < r(S[j]+i) for all j.

Problems F is a linearly constrained convex optimization program. There may be many

redundant constraints. We will consider removing redundant constraints in the next subsection.

4.3.4 The Subproblems of P

It is computationally impossible to solve P by solving all the subproblems each of which is

defined on an element of Q. More aggregated solution set paritions are necessary. In the

following, we define a specific type of solution subset — the L-sets. Each L-set is the union of

some elements in We will also address how to represent and operate on these subsets.

Let H be the set of all the two-variable hyperplane (in those epXeq's) for all 1 < p < q <

lEI, and let H~ (//+) be the sets of all the half-planes Hp^~ (f/pq+).

Observation 4.2 . A linear set is defined by a set of single-variable half-planes each of which is of

the form {xj e ey] I r(Xj) < r(b)}. or {xj e eyj I r(xj) > r(b)} for some j and some antipodal point b;

and a set of two-variable half-planes in

Now, we define an L-set. Note that Q corresponds to the set of leaf nodes of a bi-

decomposition tree (bi-tree), which has G" as the root node and has each intermediate node

decomposed into two nodes by a single-variable half-plane or a two-variable half-plane. Each

intermediate node thus is the union of those elements in Q, which are the leaf nodes of the subtree

rooted by it. Also note that different orders of decomposition result in different bi-trees, and any

two bi-trees have the same set of leaf nodes Q, but their intermediate nodes are not all identical.

Since the local maxima of distance functions occur at antipodal points and at the

hyperplanes in H, we thus assume that the branching strategy in an implicit enumeration

algorithm is to partition a solution subset with either a single-variable hyperplsuie associated with

some antipodal point, or a two-variable hyperplane in H. Two implicit enumeration algorithms

thus differ only in the order of applying these hyperplanes. Thus, the branching tree generated by

an implicit enumeration algorithm is a subtree of some bi-tree. In other words, every solution
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subset considered in an implicit enumeration algorithm is the union of some elements of Q.. We

thus call these subsets L-sets. Formally, an L-set is defined as

Definition 4.1. An L-set S is a subset of G" such that

S = {X G G" Ixj G CL[j] £ e^j], for each j g J', and (xj, x^) € for (j. k) g B},

where J' is a subset of index set J, CL^jj is a segment of some edge ejjj with two anti-podal points

as boundaries, c {(j, k) I j < k, j, k g J'}, and is either the or the /^u][k]~
in ®[j]^0[k]-

Example 4.8 . Consider the network G shown in Figure 4. 1 . Let P be a 3-facility problem. With

//jg+ = {(zj, Z2) G ejXeg 1 t(z{) + Kzz) - 9}. the upper-right quadrilateral shown in Figure 4.3b, S =

{(xj, X2 , X3) I Xj G ei X2 G eg, X3 unrestricted, (xj, X2) g //ig"^} is an L-set. Set S is the union of

those linear sets of the following form:

LS = {(x,, X2 , Xg)! Xi G C 6
i,
X2 G £{2]

s; eg, Xg G Xf3]
s; e[3 ],

(Xj, G

(xi, Xg) G L/?[i][g] c ejXejg], (X2, Xg) g L/Jpjpj ^ egxe^j}.

Here, each Ln is a linear segment and each is a linear region.

The subproblems of P we are interested are the ones defined on L-sets.

Definition 4.2 . An L-subproblem P' of P is a subproblem defined on an L-set S.

For the rest of this subsection, we study the structure of an L-set. An L-set is the

intersection of a collection of single-variable half-planes and two-variable half-planes in E". It is

desirable to represent an L-set with only its binding constraints. That is to represent an L-set S as

the set {X I Xj G L|j], for j g J', and (xj, x,j) g for every j
< k}, where L[j] = {xjlX g S} c CL[j]

and /?jk = {(Xj, x,,)! X G S}. This is important for controlling the number of constraints in lower

bounding problems and improving PLC underestimates, since the quality of PLC underestimates

is dependent on the sizes of those Lrjj's and Rj^s.

The simplicity of the constraints of L-set makes it possible to eliminate ail its redundant

constraints as the following. The set of binding constraints form L-set satisfies

Constraint-Description 4.1 :

There exists an index subset J' c J such that

(a) for each j g J', Xj is restricted to an edge, say ey].
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(b) for each j € J', there are at most two single-variable half-planes which involve variable Xj,

(c) for each j e J', a single-variable half-plane involving Xj is of the form (
Xj
e ejjj I r(xj) < aj }

or

{Xj e e[j] Ir(Xj) > Pj} (If
pj
< ttj, then the linear-set is empty),

(d) for each (j, k), j, k € J', there is at most one two-variable half-plane involving both Xj and Xj^,

and such a half-plane must be {(xj, Xij)l(Xj, Xj^) € A^(j][ic]. for some e

Since an L-set S (r(S) actually) is a polytope in E", we can build S by adding one constraint at a

time. At each iteration, we detect and eliminate redundant constraints. It is thus sufficient to give

an algorithm for the following problem:

Adding a Constraint : Let S® c E" be a nonempty set represented with binding constraints. Let S

be derived from by imposing on S® either a single-variable half-plane or a legitimate two-

variable half-plane (a legitimate two-variable half-plane involves two variables for which no

other two-variable half-planes of S® involve both of them). Remove all the redundant constraints

for S, or determine that S is empty.

In Appendix B.l, we give such an algorithm.

As for the geometry of Lyj's and Rj^'s, Lyj is a line segment; we know that for every j, k e

J', either = (LyjXLf^jInATujfy or = LujXL^^j; if j and k are not in J'; = L[j]XG if j

€ J' and k € J'. For example, the L-set in Example 4.8 can be represented as

S = {(xj, X2, X3) I xj e L[j], X[2] 6 L2, (xj, X2) e R12}

where L^j] = [v,, V2], L[2] = [v2®, V5] (V2* is the point in eg 3 units distant from V4 (t(v2*) = 3)), and

/?12 = (L[i]XL[2])0 Hig"*".

Observation 4 .3 . Set defines either a triangle, a quadrilateral, or a pentagon in e^^xe^jj.

Proof. Either = LujxLf^], or Rj^ = (Ly^xL^kj) n ^[j][k]. For the first case, is a quadrilateral.

For the second case, has a boundary the line segment running through eyjXefjj] in 135

degrees (see Figure 4.1 la, coincides with line segment Lh)- Thus, the geometric shape of

can only be a triangle, a quadrilateral, or a pentagon. |
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4.4. Lower Bounding Problems

In this section, we discuss several lower bounding techniques for an L-subproblem

P': Minimize {f(X) = c(D(X)) I X e S}, where S is an L-set. First, under restriction S, we derive

some PLC underestimates for distance functions, and then we combine these underestimates with

the objectives of P to obtain lower bounding problems for P'.

4.4. 1. PLC Underestimates for Both Types of Distances

Let d(. ,
.

)“
denote the PLC underestimate of d(. , .)• For completeness, we give every

distance function an underestimate. We could only let d(Vj, Xj)~ = 0, and d(Xj, Xj.)~ = 0, for Xj

and/or Xj^ unrestricted (not in J’). The rest of this subsection is to find nontrivial PLC

underestimates for those distances involving restricted variables.

4.4. 1 . 1 . The PLC Underestimate of dfvj. Xj) for j
eX

Now, Xj is restricted to L[j] = [aj, Pj]
- an edge-segment in some edge e^j. Since d(Vj, xp is

piecewise linear and concave over Ljjj, the best PLC underestimate for it is its linear supporting

plane, which is the linear function running through points (tfccj), d(v;, Oj)) and (t(Pj). d(Vi, Pj))- As

an example, consider d(v4, Xj) with Xj restricted to edge (V
3 , Vj) of Gj in Figure 4.1. In Figure

4.13, the dashed line is the linear supporting plane of d(v4, Xj) over [V
3 , V5].

Figure 4.13 An Example Linear Support Plane
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4.4.I.2 . The PLC Underestimate of d(Xj . xj for i. k 6X

Now, Xj € L[j] c Crj], X)j e q and (xj, is restricted to Rj^ = { (xj, Xi^) I X e S }.

Observation 4 .4 . If e|j] = e^i^j, than d(xj, X(.) itself is PLC over e[j]Xe[j.]. Therefore, d(xj, Xj^) is PLC

over ^j)j, since R.^ is a subset of ejj^xei^].

Observation 4 .5 . If is in a single linear region in e[j]Xe[|j], then d(xj, Xj^) is linear over

The following discussion then focuses on the case when and R.^ is not contained in

a single linear region in CnjXei^]. We construct d(x;, Xj,)~ over R.^ as follows. We use
pj

to denote

an extreme point of and use P: to denote the corresponding extreme point (pj, d(pj)) in {(t(jc),

d(x)) I X e d(ar) is the distance function value evaluated at jc } . For R.^. a triangle with extreme

points Pi, i = 1 , 2 , and 3 , then let d(x:, Xj^)" be the function corresponding to the triangle in

spanned by points P{ = (pi, d(pi)), i = 1 , 2 , and 3 . Since d(Xj, Xj^) is concave over Rp d(xj, Xj^)" is

an underestimate; Otherwise, define a quadrilateral super-set R:^ of R.^^ to be either when

is a quadrilateral, or L|j^xL|^j, when
/?jij

is a pentagon. We actually use a d(xj, Xj^)" over Rj^ as the

PLC underestimate of d(x:, Xj^) over R-.^.. Let pi, P2, P3, and P4 be the extreme points of with

P] and p3 (p2 and P4) diagonal to each other.

Example 4 .9 . Consider network G in Figure 4.1 and an L-set S = {(xj, X2)l Xj e Lj = [v,, V2], X2

e L2 = [v2*, V5] }. In this case, /?j2 = LjXL2 = R12 is a quadrilateral, pj = (vj, V2®), P2 = (V2, V2*),

P3 = (V2. V5), P4 = (Vj, V5), P, = (r(Vi), t(\2% d(Vi, V28)) = (0, 3 , 9), P2 = (t(V2), t(V2®), d(V2, V28)) =

(6, 3 , 15 ), P3 = (r(v2), rfvj), d(v2, Vj)) = (6, 10 , 8), P4 = (t(vi), dfvj, Vj)) = (0 , 10, 14).

Furthermore, let A(a, b, c) be the convex hull in Ep spanned by three linearly independent

points a, b, and c in Ep. Note that R.y^ consists of A(p2, Pi, P4) and A(p2, P3, P4) (Rj^ also consists

of A(pj, P2, P3) and A(pj, P4, P3)). In Figure 4 . 14b, we illustrate R^^, pj's, P^'s, and the triangles

A(P2, Pj, P4), A(P2, P3, P4), A(Pj, P2, P3) and A(Pj, P4, P3) (To help remembering, note that each

triangle is uniquely associated with the extreme point in the middle position of the A(., ., .). For

example, A(P2, Pi, P4) and A(P2, P3, P4) differ in that one has point Pi in the middle and the other

has P3 in the middle). Let L(X;, Xj^), q = 1 , ..., 4 , be the algebraic forms of the linear planes
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Z

Figure 4.14 The Convex Hull

containing A(P2, Pi, P4), A(Pi, P2, P3), A(P2, P3, P4), and A(Pi, P4, P3) respectively (/q(Xj, x^) is the

algebric form of triangle A(. , Pq, .)). Let 513 (534) be the 2-piecewise linear surface in E^, formed

by triangles A(P2, Pi, P4), A(P2, P3, P4) (A(Pi, P2, P3) and A(Pi, P4, P3)). Again, 5pq is the 2-

piecewise linear surface consists of triangles A(. , P„, .) and A(. , Pq, .). The algebraic

representations of ^13 and 534 are respectively

and

/l(Xj, Xk)

p/l(Xj, Xk) =

[ /3(Xj, Xk)

if (Xj, xj.) e A(p2 , Pi, P4)

if (Xj, Xk) e A(p2 , P3 , P4),

1
/2(Xj, X,,)

p/2(Xj, Xk)= i

1 /4(Xj, Xk)

if (Xj, Xk) e A(pi, P2 , P3 )

if (Xj, Xk) e A(pi, P4, P3).

Example 4.10. For the ^p. /?p'. pj. P}. i = 1, ..., 4, given in Example 4.9, we have

•

1 triangles in /?i 2
'

Algebraic Representations

1 ^(P2. Pi- P4) {(xi, X2) 1 Xi 6 Li, X2 € L2 , 7t(xi) + 6r(x2) ^ 60}

2 A(P2 - P3- P4) {(xi, X2) 1 Xi e Li, X2 e L2 , 7r(xi) + 6r(x2) > 60}

3 ^(Pl- P2- P3) {(xi, X2) 1 Xi e Li, X2 € L2 , -7r(xi) + 3r(x2> < 30}

4 A(Pi, P4- P3) {(xi, X2) 1 Xi € Li, X2 e L2 ,
+ 3t(x2) > 30}

•

1 triangles in Algebraic Representations /jfxi, X2)

1 A(P2, Pi, P4) /i(xi, X2) = t(xi) 4- 0.7143r(x2) + 6.8571

2 A(P2 , P3 , P4) /3(xi, X2) = -t(Xi) - KX2) + 24

3 A(Pi, P2, P3) /2(xi, X2) = r(xi) - r(x2) + 12

4 A(Pi, P4 , P3) /4(xi, X2) = -t(xi) + 0.7143r(x2) + 6.8571.

One can verify that /2(xi, X2) > /4(xi, X2) when (xi, X2) e A(pi, P2, P3) and /4(xi, X2) ^ *^2)

when (xi, X2) e A(pi, P4, P3). Therefore, from the definition of pl2i^u ^2), we have

p/2(xi, X2) = max{/2(xi, X2), /4(xi, X2)}. This means surface 524 is PLC.
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In general, one of the two surfaces Sj3 and ^24 is always PLC. Figure 4 . 14a and 4 . 14b

demonstrate, respectively, the cases when 5
j 3 and 534 are PLC.

Property 4 . 1 . Over Rj,^', either (a) p/i(Xj, x^) = max{/i(Xj, Xj^), /3(Xj, x^)}, or (b) p/2(xj, x^) =

max{/2(Xj, x^), UiXy x^)}. If P], P4 are not in some linear plane, then exactly one of (a) and

(b) is true.

Proof. In Appendix B.2 , we give a geometric theory in of which Property 4.1 is a special case.

The following property states that in 5
j 3 and 524 the one which is PLC is the piecewise

linear supporting plane of d(Xj, Xj^) over R:^.

Property 4 .2 . Let p/(Xj, Xj^) = p/i(x:, Xj^) if (a) in Property 4.1 is true, and p/(xj, Xj^) = p/2(xj, Xj^) if

(b) in Property 4.1 is true. Then, p/(x:, X|^) is a PLC underestimate for d(xj, Xj^) over

Proof. Function p/(. , .) is PLC by its definition. Without loss of generality, suppose p/(xj, X|j) =

p/i(Xj, Xij). For any point (xj, Xj^) e Rj^, since A(p2, pj, P4>u A(p2, P3, P4) = (xj, Xj^) is either in

A(p2, Pi, P4) or A(p2, P3, P4). Without loss of generality, suppose (xj, x^) e A(p2, Pi, P4), so that

point (t(Xj), t(X]j), p/i(Xj, Xj^)) is on A(P2, Pj, P4). Thus, we know that (r(Xj), r(xij), p/i(Xj, Xj.)) =

XjPi + X2P2 + ^^3 for some Xj, X2, X3 > 0 , ZX; = 1 . Since the function d(. , .) is concave, we

know that p/i(xj, Xjj) = XjdCpj) + X2d(p2) + X3d(p3> < d(XjPj + X2P2 + X3P3) = d(xj, Xi^). |

Now, we can give a procedure to construct d(x:, Xj^)".

Procedure 4 . 1 . (Constructing d(xj, x^)“ over /?j|j)

If Rjjj is a triangle, then let d(xj, Xj^)" be the function corresponding to the triangle in spanned

by points P, = (r(pi), d(pi)), P2 = (r(P2), d(p2)), P3 = (r(P3), d(p3)) where pj, P2, P3 are the three

extreme points of If Cq] = e^^ or is contained in one of the linear regions in ey]Xe[k]. then

let d(Xj, Xfc)" = d(Xj, Xjj); Otherwise, let d(Xj, Xj^)~ be the function p/(xj, Xj^) defined in Property 4 .2 .

Example 4 . 11 . Let P be on the G in Figure 4 . 1 , P' a subproblem of P with (xj, Xj^) e L^^xL^y =

[V3, V5]x[v2, V5'^] c 07X04. Thus, d(Xj, Xif) is nonlinear over LyjXLp^j (see Figure 4 .3c). From

Procedure 4 . 1 ,
= LjjjXLp^], and its extreme points are pi = (V3, V2), P2 = (V5, V2), P3 = (V5, V5“*),

and p4 = (V3, V5'*). The corresponding P-points in E^ are Pj = (t(v3), t(v2), d(v3, V2)) = (0, 0 , 6), P2



101

d(v3, V5‘*)) = (0 , 7 , 12). The representations of A(P2, Pj, P4) and A(P2, P3, P4) are, respectively.

check that /3(xj, x^) < /i(xj, x^), V(xj, x^) e A(p2 , Pi, P4) and /,(Xj, x^) < x^), V(Xj, x,,) e

A(p2 , P3 , P4). Thus, the 2-piecewise linear surface ^ 13 , which consists of triangles A(P2, Pi, P4)

and A(P2 , P3 , P4), is p/i(xj, Xj^) = max{/i(Xj, Xj^), /
3
(xj, X|j)}. Figure 4.15 illustrates the surface S 13 .

4.4.2. A Lower Bounding Problem Based on Subgradients

In this subsection, we extend the subgradient lower bounding techniques suggested in

Hooker (1986, 1989) to problems which involve both types of distances. The subproblem is

P': Minimize (f(X) = c(D(X)) I X e S} where S is an L-set.

Let Sg be the set of all the extreme points of S.

Lemma 4.1 . Let X^ = (xi^, . . .,
x„E) be an extreme point in Sg. Let |Xjj denote the argument in

function c corresponding to d(Vj, Xj) and let denote that corresponding to d(xj, Xj^). Let

Vc(D(XE)) = (..., 0ij, . . ., . . .) be a subgradient of c evaluated at D(XE) (0jj
= 8c/8 |i,jj and =

8c/8Xjij evaluated at D(X^), if c is differentiable). Then,

/i(Xj, x,;^) = 0.1429r(Xj) + 0.8571r(X|c) + 6 and /3(xj, Xj^) = 0.2857r(xj) + 1.1429r(xi5) + 4. One can

P

P

Figure 4.15 An Example of a PLC Underestimate

for any X € S (4.5)
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where C(XE) = f(XE) - Ij j0ijd(Vi, Xj^) - Ij,k^jkd(XjE, Xk^).

Proof. Since c is convex, thus f(X) > f(X^) + LijOij[d(Vi, Xj) - d(Vi, Xj^)] + Sj,k^jk[d(xj, Xk)
-

d(XjE, Xk^)] for any X e S. With C(X^) the sum of all the constant terms, we have (4.5). |

Lemma 4.2 . For any given extreme point X^ e S£ and a subgradient (. . ., Ojj, . . ., ^k, . . .) of c

evaluated at D(X^), we have

f(X) > C(XE) + lijOijdfVj, Xj)“ + Ij,k^jkd(Xj, Xk)~ for any X € S (4.6).

Property 4.3 . Let S' be a subset of Sg. The following problem is a lower bounding problem of P'.

Pn': Minimize z

s. t. z > C(X^) + Sij 6ijd(Vi, Xj)” + Lj k^jkd(Xj, Xk)“ for X^ e S'

Xe S.

Since each d(. , .)“ is PLC with at most two linear pieces, the above problem can be easily

transformed into a linear programming problem. Since we are mostly interested in the

multimedian and the multicenter problems, we now give their respective forms of (4.5) below.

Remark 4.

1

. For the multimedian problem, the subgradient lower bound in (4.5) is f(X) itself.

Remark 4.2 . For the multicenter problem, a subgradient of c evaluated at some point D(X) for

some X e G" is a vector (. . . 0,: . . ., ^jk, . . .) wheresjk>

0 -Oy 1

f 0 if (i, j) € A(X)

WyXij if (i, j) e A(X)
and^jk=

\

0 if (j. k) e B(X)

IvjkXjk if(j,k)G B(X),

(4.7)

with A(X) and B(X) the sets of variable pairs with the corresponding weighted distance equal to

f(X) (i.e. A(X) = {(i, j) i Wijd(Vi, Xj) = c(D(X))} and B(X) = {(j, k) I Vjkd(xj, Xk) = c(D(X))}), and

I{ Xijl(i,j)e A(X)uB(X)} = l.

Proof. We can express c as maxlajyi, ..., oCpyp} where p is the number of arguments in c. For a

given point Y' = (yj', ... yp'), let S(Y') denote the set of subgradients of c evaluated at Y'. We

know that S(Y') is a convex set spanned by its extreme points. An extreme point of S(Y') is some

vector (0, ..., 0, a[,, 0, ..., 0) such that tthyh - rnaxjajyj', ..., oCpyp'}. Substituting ttj, and yj,' with

the corresponding weight and distance, an extreme point of S(D(X)) is either a vector (0, . . ., 0,

Wjj, 0, ... 0) where WydfVj, Xj) = c(D(X)) or a vector (0, . . ., 0, Vjk, 0, . . ., 0) where Vjj^ d(xj, Xk) =
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c(D(X)). Thus, as a convex combination of these extreme points of S(D(X)), a subgradient of c

evaluated at D(X) is a vector (. . . Oy .... . . .) as given in (4.7). |

Remark 4.3 . For the multicenter problem, let A(X) and B(X) be the sets aefined in Remark 4.2

for any X e G". Then, for any given X' € S,

f(X) > I(i,j)eA(X’)^ijWijd(Vi, xj) + S(j,k)6B(X'AjkVjkd(Xj, Xk), for any X € S (4.8).

Proof. Replace the Oy's and ^ji^'s in (4.5) with the corresponding right-hand sides in (4.7) to get

the conclusion. |

4.4.3. The Lower Bounding Problem Based on Distance Underestimates

For the subproblem P', we can constmct a lower bounding problem Pl2
' of P’ by directly

replacing each d(vj, Xj) (d(xj, Xi(.)) with its underestimate d(v;, Xj)~ (d(Xj, Xj^)").

Pl2 - Minimize f(X)" = c( . . .', d(vj, X:)“, . . ., d(x:, Xj^)", . . .).

X e S ^ ^

Property 4.4 . The optimal value of Pl2 greater than or equal to that of Pli' in Property 4.3.

Proof. The right-hand-side of (4.6) is a lower bound linear approximation of c(. . ., d(Vj, Xj)“, . . .,

d(Xj, Xk)-, ...). i

Figure 4.16 The Graphs of fj and fj“
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Example 4.12 . Consider a multicenter problem on the equilateral triangle G in Figure 4.16(a).

P': minimize f(xj, X2) = max{ 4d(vi, Xj), 6d(v2, Xj), 3d(v3, x,), 3d(vj, X2), 2d(v2, X2), 7d(v3, X2),

XeS 3.5d(X[, X2)}.

Here S = [vj, V2]x[v2, V3]. The optimal value of P' is 3.43. We construct the subgradient-type

lower bounding problem with the four extreme points in S, = (v,, V2), X^ = (vj, V3), X^^ =

(v2, V2), and X^ = (V2, V3). The extremal subgradients evaluated at these extreme points are

respectively Vc(D(XE1)) = (0, 0, 0, 0, 0, 7, 0). Vc(D(XE2)) = (0, 6, 0, 0, 0, 0. 0). Vc(D(XE3)) = (0,

0, 0, 0, 0, 7, 0), Vc(D(XE4)) = (4, 0, 0, 0, 0, 0, 0). According to Property 4.3, the subgradient-type

lower bounding problem is

Pli': Minimize {z I4d(vj, Xj) < z, 6d(v2, Xj) < z, 7d(v3, X2) < z, z > 0, (xj, X2) € S}.

The optimal value of this lower bounding problem is 2.4. The optimal value of P' is 3.43.

Now, we consider the lower bounding problem obtained by substituting distance

underestimates directly into function c. Figure 4.16(b) and (d) show the graphs of d(Vj, Xi)'s and

d(vj, X2)'s respectively. The dark lines are the graphs of fi(xi) = max{Wijd(Vj, Xj), i = 1, 2, 3} and

= max{Wi2d(Vi, X2), i = 1, 2, 3}, respectively. According to the discussion in Subsection

4.3.2, we have d(v3, Xj)" = 1, d(vj, X2)“ = 1, d(vj, Xj)“ = d(vj, Xj) for the rest of the (i, j)'s, and

d(xj, X2)“ = max{ 1 - f(xi), r(x2)}. Thus, the lower bounding problem is

Pl2': minimize f(xj, X2)“ = max{4d(vj, Xj), 6d(v2, Xj), 3, 3, 2d(v2, X2), 7d(v3, X2), 3.5d(xj, X2) }.

X G S

Figure 4.16(c) and 4.16(e) show the graph of each d(Vj, Xj)" and d(vj, X2)“ respectively, the dark

lines in both figures are respectively the graphs of fi(xi)“ = max{Wjjd(Vi, Xj)", i = 1, 2, 3} and

^2(^2)" = ™ax{Wi2d(Vi, X2)~, i = 1, 2, 3}. Problem Pl2’ produces a lower bound 3.

4.4.4. A Lower Bounding Problem for the Multicenter Problem

Here, we develop a better lower bounding problem for a multicenter subproblem

P': Minimize f(X) = max{ ..., Wijd(vj, Xj), ..., V:jjd(Xj, Xj^), ...}.

X G S ^ ^ ^ ^

Let fj(Xj) = max{Vijd(Vj, x:), i = 1, ..., m}, so that f(X) = max{ max{fj(Xj), j
= 1, ..., n},

Vjj.d(Xj, Xjt), j < k}. Over L|jj - a segment in some edge, fj(Xj) is piecewise linear. The best PLC
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underestimate for each fj(Xj) over Ly^ is its PLC supporting plane. Together with the d(xj, X|j)“

developed in this Subsection 4.4. IB, we obtain a PLC lower bounding problem for F, which is

the best for F discussed in this chapter.

Example 4.13 . Consider again the instance of the multicenter problem in Example 4.12. The

graphs of fi(xj) and f2(x2) are shown in Figure 4.17a and 4.17c respectively. The best PLC

Figure 4.17 Graphs of f: and pj

underestimate of fiCxj) is Pi(Xj) = max{6(l-r(xi)), 4r(xi), (1/1 l)(-12/(xi) + 48)}, where (1/1 1)

(-12r(xi) + 48) is the line passing through the local minima of fj. The best PLC underestimate

for f2(Xj) is P2(x2) = max{7(l-r(x2)), -2r(x2)+5}, where -2r(x2)+5 is the line passing through

local minima of f2 . The graphs of pj(

)

and P2(

)

are shown in Figure 4.17b and 4.17d,

respectively. The d(xj, X2)~ is the same as in Example 4.12. Hence, we can formulate a lower

bounding problem; Minimize max{6-6ti, 4tj, 48/ll-(12/ll)tj, 7-7t2, 5-2t2, 3.5-3.5ti, 3.5t2l0 <

tj, t2 ^ 1 }, which produces a lower bound 3.43 (the optimal value of P' is 3.43).

Property 4.5 . Let Pj(Xj) be the best PLC underestimate of fj(Xj) over Lyj. Then the lower

bounding problem Pl3’: Minimize f(X)“ = max{ max {pi(xi), ..., p„(x„)}, ... Vjjjd(xj, Xj^) , ...} is

the best for F among the three types of lower bounding problems for F considered so far.

Since each fj(Xj) is a piecewise linear function, the PLC supporting plane for fj(Xj) over Lyj

is the PLC supporting plane of a set of points ([Xq, fj(|lo))> •••• (Mp» fj(Fp)). where |Xo the

two end-points of Lyj and |i.j, i = 2, . . ., p-1, are points in B: - A: where Bj =
{ P e Ly]l Wijd(Vi. p)
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= W[,jd(V|,, P) for some h and i } is the set of bottleneck-points in L[jj, and Aj (
Aj c B:) is the set of

local maxima of fj(Xj) in L[jj. One can find Bj and A: in low order polynomial-time. Thus, the

problem of finding the PLC supporting plane is a special case of finding the PLC y-dimension

supporting plane for a set of points in E^. In Appendix B.3, we give an 0(p3) algorithm for the

latter problem. Finally, note that this approach of using the best PLC underestimate for each

individual fj(xj) also applies to the multimedian problem where each fj(Xj) = ZiWijd(Vj, x;). We do

not discuss this extension here, since for the case of the multimedian problem, each of the best

PLC underestimates Pj(xj) is the same as ZiWjjdfVj, Xj)“, so that this "best PLC" approach will

construct the same lower bounding problem Pl2
' defined in Subsection 4.2.2.

4.5 Multifacilitv Problems on Grid Networks

In the previous section, lower bounding problems were useful only for subproblems at deep

depths in the branching tree; that is, when a large percentage of location variables are restricted

to edges. This is necessary for general cyclic networks, since the PLC underestimates of distance

functions are only useful on subnetworks at the edge level. With a grid network, they are useful

on much larger subnetworks, so that lower bounding problems are useful at much lower levels of

the branching tree . In fact, as we have seen in Chapter 3, the rectilinear underestimate of d(. , .)

exists on the entire original network. In this section, we will develop some additional PLC

underestimates for d(. , .), which, in contrast to the rectilinear distance underestimate,

progressively improve their approximation quality. We will also give lower bounding problems

for various multifacility location problems defined on grid networks.

As in Chapter 3, let Ng denote the grid network, Uj denote a location variable on Ng with

coordinates (u^, Uy) e E^, and r(pj
, P2) (= r^fp^j, p^2) + ryCPyb Py2,)) denote the rectilinear distance

between the two points. Since Ng is an embedding in E^, Ng" is an embedding in E"xE". A

solution U in Ng" is a vector in E" x E". Let (Uy) denote the vector of the x-coordinates (y-

coordinates) of U. Network Ng encloses a rectangle [v^„, v^n^]x[Vy^n, Vy^^j^] in E^.
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For the rest of this chapter, we study problem P: Minimize { f(U) = c(D(U))IU e Ng"} and

its subproblem P'; Minimize { f(U) = c(D(U))IU € SnNg"}, with S a polytope in E"xE", defined

later in this section.

4.5.1 Representing d(. . .) as Functions on E^

In this subsection, we will see the following. Similar to rectilinear distances, the grid

network distance d(. , .) can be represented as the sum of two functions djj(. , .) and dy(. , .)

defined on Ng. Respectively the distance traveled along x-axis and y-axis, d^(. , .) and dy(. , .) can

be explicitely represented as functions on E^. But, d^(. , .) is not independent of the y-

coordinates and neither is dy(. , .) independent of the x-coordinates. Another difficulty, which

complicates our exposition and algorithms considerably, is that the analytical form of d^(. , .) and

dy(. , .) are not unique. However, we still can use this "semi-separability" to develop some PLC

underestimates for both d^(. , .) and dy(. , .).

Let vlj, ..., vlp, vlj., < vlj, be the x-coordinates of vertical grid lines of Ng and hi], ..., hlq,

hlj.j < hlj, be the y-coordinates of horizontal grid lines of Ng. A vertex in the interior of some grid

edge (i.e. not an intersection point) is a v-int vertex, if it is on a vertical grid line, or is a h-int

vertex , if it is in a horizontal line. For any vertex Vj, let vL, and vLi' be the x-coordinates of the

vertical grid lines adjacent to Vj, with vl^j < vljjj' and vLi = vlrn’ if V; is on a vertical grid line. Let

hlfij and hlfj]' be similarly defined for the horizontal adjacent grid lines.

One concept that we will repeatedly encounter is the following. We say two points on Ng

are semi-antipodal to each other if they are either (a) on two different vertical grid lines and both

are in the interior of the same grid row; or (b) on two different horizontal grid lines and both are

in the interior of the same grid column. Traveling between two semi-antipodal points on the grid

network is like traveling from a point on one side of a rectangular obstacle to another point on the

opposite side. The shortest distance between two semi-antipodal points thus is more than the

rectilinear distance between them.
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4.5.I.I. Tvpe-I Distances

A type-I distance d(Vj, u) can be represented as a function on N„ as follows. First of all.

d(Vj, u) = Iv^i - u^l + IVyi - Uyl, for any u e Ng, and any intersection vertex Vj.
g’

(4.9)

Furthermore,

d(Vj, u) = dx(v^j, Uj) + IVyj - Uyl, for any u e Ng and any h-int vertex v
g

where d^(v^j, u^) is a real-valued function in defined as follows:

(4.10)

dx(Vxi- Ux) =i

Ivxi - Uxl if u, < vl[ij, or Ux > vlfii', or u^ = v„j
[i] y>

I min{Vxi+Ux-2vl[ij, 2vl^ij'-Vx—Ux} o/w (i.e. vl[jj < Ux < vl^jj' and Uy ^ Vyj),

(4.11)

Conditions in (4.1 1) tell when a point u is semi-antipodal to a h-int vertex Vj. If u is semi-

antipodal to Vj, then traveling from u to Vj must first reach one of the vertical grid lines adjacent to

Vj and u, and then from that grid line to Vj. Thus, the shortest distance traveled along the x-axis is

the smaller of Ux - vlrn + Vx, - vlrn and vlrn' - Ux + vim' - Vxj, or equivalently, is min{ Vx, + Ux -

2vlp], 2vl[j]’ - Vxi - Ux). On the other hand, since Vj is a h-int vertex, the distance traveled along

the y-axis is IVyj - Uyl for any u e Ng. Symmetric to (4.10) and (4.1 1), we have
g

where

d(Vj, u) = IVxi - Uxl + dy(Vyj, Uy), Vu e Ng, and any v-int vertex Vj,

dy(Vxi, Uy) = 1

iVyi - Uyl

g’

if Uy < hl[i], or Uy > hl[ij', or Ux = Vxj

(4.12)

. min{Vyi-HUy-2hlpj, 2hl[i]'-Vyi-Uy} o/w (hl[j] < Uy < hlpj' and Ux * Vxj).

(4.13)

To express d(Vi, u) in a more unified way, we use a simpler function in to capture all the

cases. Define real-valued functions in E>

7i(zlai, a2 , a3) = min{ai + z - 2a2 , 2a3 - ai - z} and

(t>(zlaj, a2, a3) = maxjlaj - zl, Jt(zlai, a2, a3)},

where aj, a2 , and a3 are some given real numbers. Figure 4.18a and 4.18b depict, respectively,

the graphs of Iz - al and 4>(zlai, a2, a3), a2 < aj < a3 .

Furthermore, for any given vertex Vj, define real-valued functions on E^

I Vxi “ ^xl if '^yj
= = i^ij f®'" i

5x(Vxi.Ux)=
j
i <t>(“x Ivxi. vlp], vl[ij') o/w.
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6y(Vyi, Uy)=
^

iVyi - Uyl

^ 0(Uy IVyj, lll[i]t ^l[i]

)

if v^i = = vlj for some i

o/w.

Ohservation 4.6 . d(Vi, u) = 5^(v^i, u^) + 5y(Vyj, Uy) for any u e Ng and any vertex Vj.

Proof . To verify, compare S^Cv^j, u^) + 6y(Vyj, Uy) case by case with d(v, u) for the cases in (4.9),

..., (4.13). One property used in the comparison is that ())(Ux Iv^^j, vl[,], vl^jj') = jt(Ux Iv^j, vl[,], vl^jj)

> Iv^ - Ujl if and only if vljj] < < vl[i]’. That is, <j)(Ux I v^j, vl^j], vl^jj') is greater than Iv^j - u^l

only when Vj is a h-int vertex and is in the interior of the same grid column containing Vj. A

similar property for <})(Uy Ivy^, hlpj, hlpj') is also used.

A Iz - al

z

A phi

z

Figure 4.18 The Graphs of Functions <|) and Iz - al
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4.5.I.2. Tvpe-II Distances

Similar to the type-I distance case, for any (uj, U|j) € Ng^, if Uj and are semi-antipodal

inside grid column i, then

d(Uj, Uk) = min{Uxj + “ 2vli, 2vli^i - + '“yj
“ “ykl. (4-14)

if Uj and u^ are semi-antipodal inside grid row i, then

d(Uj, Uk) = lUjj - Uxkl + min{Uyj -i- Uyk - 2hlj, 2hlj+i - Uyj - Uyk), (4. 15)

otherwise

d(uj, Uk) = lu^j - u^l + lUyj - UykI. (4.16)

To express d(uj, Uk) with a simpler function.

First, define real-valued functions on as follows

9^(zj, Z2) = max{lzi - Zjl, t,i(zi, Zj), ..., Xjp.i(z,, Zj)},

(py(z,, Z2) = max{lzi - Z2I, ty,(zi, Z2), ..., ty q.ifzj, Z2)},

where

Tjifzi, Z2) = min{zj + Z2 - 2vlj, 2vli+i - Zj - Z2 }, i = 1, ..., p-1, and

Tyi(zi, Z2) = min{zi -i- Z2 - 2hlj, 2hlj+i - z, - Z2 }, i = 1, ..., q-1.

^^2 ^ The D«crea»ng Direction

Figure 4.19 The Contour Set of Izj - Z2 I
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i

The Decreasing Direction

Figure 4.20 The Contour Set of tp

Figure 4.19 and 4.20 depict, respectively, the contours of Izj - Z2 I and (Px(^i> ^2)

vlp]2 with p = 5. Since there is no structural difference between <Py, the contours of tpy

over [hlj, hlq]2 are similar. Every *^he property that txj(zi, z-^ > Izj - Z2 I if and only

if (zj, Z2) e SRj = (vlj, vli^.j)x(vlj, vlj+j), so that over each open set SR;, (Px(^i> ^2) = ^2)>

piecewise linear and concave; Over the rest of E^, (PxC^i. ^2) = Izj - Z2I, linearly convex.

Furthermore, each Xxi(Uxj, Uxj^) is the distance traveled from Uj to Uj^ along the x-axis when Uj and

Ujj are semi-antipodal inside grid column i. Thus, <Px(^xj« *^xk) ^he distance from Uj to Uj^ along

the x-axis for all the cases of (Uj, U)^) on Ng^xNg^ except when Uj and Uj^ are on the same

horizontal grid line and, at the same time, are in the interior of some grid column. The function

(Py has parallel properties. To sununarize, define real-valued functions on E^xE^ as follows:

lUxi - Ux2 l if Uyi = Uy2 = hi; for some i

Px(Uxl. Ux2> =
\
I- <Px(Uxl- Ux2) o/w

and

lUyi - Uy2 l if Uxi = 0x2 = '^ii for some i

Py(Uxl. 0x2) =
j
I <Py(Uyl, Uy2> O/W.

Observation 4.7 . d(uj, u^) = Px(Oxj, Ux^) + Py(Uyj, Uy^) for any (uj, u^) e Ng2.
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Proof. The proof is a straightforward case by case comparison between Px(Uxj, u^k) + Py(Uyj, Uy^)

and d(Uj, u^) for those cases listed in (4.14) to (E4.16). |

4.5.2 Definition of an L-Set S

Now, we define the type of solution subsets in the B&B scheme. For the general cyclic

network case, we define L-sets directly on G". Here, we define a solution subset by defining a

polytope S in E"xE". We call S an L-set . where L stands for linear. Since Ng" is an embedding in

E"xE", SnNg" is well-defined after defining S. In fact, S is defined based on some geometric

terms involving Ng. We define S by defining c E" and Sy c E", and letting S = S^xSy. We

assume that and Sy have no structural differences, so that we only discuss S^.

4.5.2. 1 . The Topology of Sx and

Now, we provide motivation for the way we define S^. Similar to the approach for a

general cyclic network, S^ will be defined by some hyperplanes, each of which is associated with

some break points at which 5^ or p^ reaches it (local) maximum. Partitioning a solution subset

with such a hyperplane reduces the number of local maxima in the resulting subsets.

Definition 4.4 . (The LM (Local Maximum) Points in a Grid Line)

For a h-int vertex Vj, let v^j® = vl^jj + vl^jj' - v^j. A point Sj* e Ng is an LM point of Vj if s^i® = v^j®,

and Sj® is not in the same horizontal grid line that contains Vj.

An LM point Sj® of a h-int vertex Vj is the antipodal point of Vj in the sense that there exists

an e > 0 such that <t»x(Sxj“ Ivxj, vl^jj, vlfj]') > (j)x(p IVxi, vl^j, vl[i]') for any p in [Sxi® - e, Sxj® + e], p

Sxj®. A Sxi® is equivalent to point aj® in Figure 4.18b. For example, if Vj is the middle point of the

bottom horizontal grid line in a single cycle grid network. Then, V; has cui LM point in the middle

of the top horizontal grid line. In general, for a h-int vertex Vj, each horizontal grid line that does

not contain Vj contains exactly one of its LM points, so that vj has exactly q-1 LM points. Due to

the following remark, we include each {(Ux, Uy) g E* IUx = Vxj®} into the candidate hyperplanes.

Remark 4.4 . For an h-int vertex Vj, 5x(Vxi, Ux) is PLC over [Vx^in. Vxi*] and [Vxj®, Vxi„ax] for any

given Uy.
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Proof. From the definition, u^) = Iv^j - u^l if Uy = Vyj, and u^) = <t>(u^ Ivj^j, vl^j], vl^j]')

otherwise. For the first case, 5^(Vjjj, u^) has a v-shaped graph and either or =

''xmax- Thus, the remark is tme. For the second case, 5^(Vxi, u^) has a double v-shaped graph

similar to the one shown in Figure 18b. The is the local maximum such that the graphs of

5x(Vxi, Ux) over [v^n^n, v^j^] and [v^^a, are both v-shaped. The remark is tme. |

Now, we study p^. Define hyperplanes = {(u^j, Uj2) ^ I u^, + u^2 = vlj + vlj+j}, i = 1,

. . ., p-1, where p is the number of vertical grid lines in Ng. As one can see from Figure 4.20, is

the hyperplane coinciding with the line segment L^j that has end points (vlj, vlj^.i) and (vlj^.), vlj).

Also from Figure 4.20, <px(Uxi. Ux2) reaches its (local) maximum at points on each L^j. Since

Px(Uxj, Ux]j) = tPx(Uxj» Uxi:) for many cases, Px(Uxj, Ux^) often reaches its local maximum at the

points on these L^j's. Thus, we include the H(s as candidate hyperplanes. We also use {u e I

Ux = vlj}, 1 = 1, ... p, to confine location variables to vertical grid lines and use {u g I Ux =

Vxjt^n) {u 6 E2 1 Ux = Vxjnaxl ^0 Confine location variables within [Vxnu„, Vxmaxl-

4.5.2. 2. Defining

Let //j+ = {(Uxi, Ux2)eE2| Uxi + Ux2 ^ vlj + vlj+j}, i = 1, .... p-1,

= {(Uxi. Ux2>eE2| Uxi + Ux2 < vl; + vlj+il, i = 1 p-1,

//= {Hj, ..., f/p.,}, H- = {Hf, .... /fp.r}, and //+ = {//,+ ..., //p.i+},

Ps = {Vxi“l''i is ^ h'iut vertex }u{vljli = 1, ... p).

Definition 4.5 . An Sx is defined with some aj and b; in P^, B c {(j, k)i 1 < j < k < n}, and an

intersection of some half-planes in H\jH~ for each (j, k) in B, such that

S = {Ux G E" la; < Uj < bj, for every j, and (Uxj, Uxi^) g K.^ for (j, k) g B).

Example 4.14 . Let P be a 3-facility instance defined on the grid network Ng shown in Figure

4.21, with width and length three units. The grid columns and grid rows are equally spaced. Let

Vj be the vertex in the middle of the second horizontal grid line. According to the definition of

LM points (Definition 4.4), Vxi® =1.5. The following point sets satisfy the definition of Sx:

a- Sx = {(Uxi, Ux2, Ux3) I 0 < Uxi < 1.5, 0 < Ux2 < 3, 0 < Ux3 < 3}

b. Sx = {(Uxi, Ux2, Ux3) I 1.5 < Uxi < 3, 0 < Ux2 ^ 3, 0 < Ux3 < 3}

C. Sx = {(Uxi, Ux2 , Ux3) I 1 < Uxi < 2, 1 < Ux2 < 2, 0 < “xS ^ 3, Uxi + Ux2 < 3 ( = VI2 + VI3 ) }

d- Sx = {(Uxi, Ux2 , Ux3) I 1.5 < Uxi < 3, 1 < Ux2 < 3, 0 < Ux3 ^ 3, 3 < Uxi + “xl ^5).
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*1

Figure 4.21 An Example Grid Network

Not every half-plane involved in an is necessarily binding. Similar to the L-set defined

in the last section, the binding constraints of an SJ^ must satisfy the following

Constraint-Description 4.2

(a) for each j, there are at most two single-variable half-planes involving variable u^j;

(b) for each (j, k), there are at most 2 two-variable half-planes involving both variables

Ujjj and Ujj^; each such half-plane is in

In the constraint types and their properties, an L-set defined here is very similar to the L-set

defined in Section 4.4. To identify all the binding constraints, we can design an algorithm similar

to the one given in Appendix B.l. Thus, from now on, we assume that all the binding constraints

for S^ are known. In particular, we assume that lb-. = miniu^jlUx e S^}, rb: = maxIu^jlUx € S^},

and Xjif = { (Ujj, u^) I e } has explicite form.

Observation 4.8 . An Xji^ is either a triangle, a quadrilateral, a pentagon, or a hexagon in E^.

Proof First of all, Xjj^ is inside rectangle [lb., rbAx[lb)^, rfcj. The binding two-variable half-

planes, if there are any, will reduce Xji^ to one of the geometric regions listed above. |

After removing all the redundant constraints, we can express S^ as

S^ = {Ux € E" I lb. < u^j < rb:, for each j, and (Uj^j, u^ic) e Xjjj for all j < k}.

Example 4.15 . In Example 4.14, the S^ in c is a triangle; the in d is a hexagon.

4.5.3. Representation Uniqueness and/or PLC

In Observation 4.6 and 4.7 we established, respectively, that d(Vj, u) = 6jj(v^j, Ux)+6y(Vyi, Uy)

for any u g Ng and d(uj, Uj^) = PxfUjj, u^j^) + Py(Uyj, Uy|j) for any (uj, Uj^) e Ng^. In Subsection

4.5.2, we see that it is possible to define solution subsets based on the topology of functions 5^,
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6y, and Py, when the corresponding functions have unique forms over the entire domains. It is

equally important to know whether a distance function has a unique form over the entire domain

when we consider its PLC underestimates. Thus, in this subsection, we give some sufficient

conditions for an L-set S for determining (a) whether a function has a unique functional

representation over SnNg"; (b) whether a function is PLC over SriNg". Again, we only need to

discuss conditions for functions 5^ and p^.

Throughout the remainder of this section, let
*

/fej = min{Uxj I Ux e S^}, rbj = max{Uyj I e S^}, and Xji^ = {(u^j, u^) I e S^}

bbj = min{Uyj I Uy € Sy}, tbj = max{Uyj I Uy € Sy}, and Yjif = {(u^j, u^k) I Uy e Sy}.

First, we give some sufficient conditions for 6x(v^j, u^j) to have a unique form for all

Ue SnNg". The conditions are not necessarily mutually exclusive.

Observation 4.9 . Let Vj be a vertex on Ng and j be a location variable index.

(a) If Vyj e [bbj, tbj\, then 6^(v^, u^j) = (t>(u^j Iv^;, vl^j], vlfj]’) for any U e SnNg“;

(b) 6^(v^i, u^j) = Iv^j - Ujjl for any U € S, if at least one of the following conditions is true:

(b.l) Vjj = vl] for some vertical grid line 1,

(b.2) either rbj < vlpj or vlpj' < Ibj,

(b.3) Vyj = bb^ = tby

Proof. For Case (a), since Uyj ^ Vy^ for any U e S nNg", thus, from the definition, 5jj(v^j, Uj^j) =

<t>(u^j Iv^, vl[i], vl[ij'). Condition (b.l) says that Vj is either an intersection vertex or a v-int vertex.

Condition (b.2) implies that Uj cannot be semi-antipodal to Vj for any U. Condition (b.3) says that

in S, Uj is restricted to the same grid line that contains Vj. We see that under any one of these

conditions, 5j^(Vj^i, u^j) = Iv^j - u^jl. |

To see how general these conditions are, note that a horizontal grid line which does not

contain Vj satisfies condition (a); a region in E^, which can be separated from Vj by a vertical grid

line, satisfies condition (b.2). In the following, we give some sufficient conditions for px(Uxj, Uxk)

to have a unique form over SnNg".

Observation 4.10 . Let S be an L-set. For a variable index pair (j, k).
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(a) If Yjij contains no point (hlj, hlj), i = 1 , . .
.
q-1, then Px(Uxj> ^xk) = 9x(Uxj> Uxk). e SnNg";

(b) Px(Uxj, Uxjj) = lUxj - Uxicl for any U e SnNg" if at least one of the following conditions is true:

(b.l) there exists a vlj, 1 < i < p, that separates [Iby rb-^ from [Ib^, rb^

(i.e. either rb-^ < vl; < Ib^ or rb^^ < vlj < lb),

(b.2) bb^ = tb-^ = bb^ = tb^.

Proof. If Uj and Ujj are in the same horizontal grid line, then (Uyj, Uji^) = (hlj, hlj) for some i.

Condition (a) guarantees that U: and Uj^ are not in the same horizontal grid line for any U e

SnNg". Therefore, from the definition of px, Px(Uxj* “xk) = ^xC^^xj* ^xk)-

Conditions (b.l) guarantees that there is no U e SnNg“ with uj and Uj^ semi-antipodal;

condition (b.2) implies that both U: and Uj^ are restricted to the same horizontal grid line.

Therefore, under (b.l) and/or (b.2), Px(Uxj, Ux^) = lUxj - Ux^l.

Example 4.16 . Consider a 2-facility instance defined on the grid network shown in Figure 4.21.

Let S be an L-set with Sx = {(Uxj, Ux2)eE2|0 < Uxi < 1.5, 0 < Ux2 ^ 3, and Uxi+Ux2 ^ VI2+VI3 (= 3)}.

In this case, Xj2 = {(Uxi, Ux2)e E^IO < Uxi < 1.5, 1.5 < Ux2 ^ 3, and Uxi + Ux2 ^ VI2+VI3 (=3)}. On

the other hand, (vl;, vlj) = (i-1, i-1), i = 1, 2, 3, and 4. Set Xj2 contains no (vl,, vlj).

Once 5x (or Px) is known to have a unique form, determining whether it is PLC is straight -

forward. Thus, Observations 4.9 and 4.10 are sufficient conditions for when a 6x (or Px) is PLC

over SnNg".

4.5.4 The PLC Underestimates of Function d(. , .) on SnNg°

Respectively in Observation 4.6 and 4.7, d(vj, U:) = 6x(Vxi, Uxj) + 5y(Vyj, Uyj) VU e SnNg"

and d(Uj, Uj^) = Px(Uxj, Ux^) + Py(Uxi. Uxk)» e SnNg". We thus construct a PLC underestimate

of d(. , .) on SnNg" by constructing PLC underestimates of 6x, 5y, Px, and Py over SnNg". We

only consider 6x and Px, since the methods apply to 5y and Py with only notation changes.

4.5.4. 1 . The PLC Underestimate of Tvpe-I Distance

Now we discuss finding an underestimate for 6x over S. The universal underestimate is the

rectilinear distance. When Observation 4.9(a) does not hold, either 5x(Vxj, Uxj) = IVxj - Uxjl, as in
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Observation 4.9 (b.l) and (b.2), or u^j) has no unique expression. It is thus only possible to

make improvement when Observation 4.9(a) is true. In this case, 5^(v^j, u^j) = <t)(z laj, a2, 33) over

an interval [a, b] (with z = u^j, aj = v^j, a2 = vl^J, a3 = vl[j]', a = Iby b = rb^. We hence only show

how to find a PLC underestimate for (t>(z laj, a2 , a3)
over [a, b]. As Figure 4.18b indicates, when

a2 < aj < a3 , <t>(z la,, a2 , a3) is a piecewise linear function of a double v-shaped graph. The shape

of its graph over [a, b] depends on a and b. Nevertheless, the best PLC underestimate is the best

PLC supporting plane of (j)(z laj, a2 , a3)
over [a, b]. Figure 4.22 illustrates all the cases when the

best PLC supporting plane is a nontrivial improvement for 4» over [a, b] (in comparison to Iz -aji).

Figure 4.22 The PLC Underestimates

We now summarize the method as the following.
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Procedure 4.2 . (Constructing 6^(v^j, .)“)

If (a) of Observation 4.9 is true, then let .)“ be the best PLC supporting plane of the

corresponding (})(. Iv^j, vljj], vl^jj') over [Ibj, rb-^ \ Otherwise, let 6j(v^j, ,)~ = r^Iv^j, .);

4.5.4.2. The Underestimates of Tvpe-II Distances

Again, the universal underestimate of Px(Uxj. Ux^) is lUxj - Uxj^l. For improved underestimate

of Px(Uxj* '^xk) O''®'" ^jk» consider Observation 4.10(a) when Px(Uxj, Ux^) = 9x(Uxj> '^xk)

for all U e SnNg“), since otherwise either Px(Uxj’ ^xk) l^xj “ “xk^ f®*" U e SnNg" (as in

Observation 4.10 (b.l) or (b.2)), or Px(Uxj, Uxk) does not have a unique form. Let =

[lb:, rbj]x[lby., rfcj. From Observation 4.8, Xjj. q R:^^. It is thus sufficient to give a method of

finding a PLC underestimate of tPx(- > •) an arbitrary rectangle R Q [vlj, vlp]2.

From Figure 4.20, tpx ‘s not convex only over those open square regions SRj = {(zj, Z2) e

£2 I vlj < Z[ < vlj+i, vlj < Z2 < vlj^i }, i = 1, ..., p-1. Let CR, be the closure of RnSRj. Function

9x(- . •) over CRj is piecewise linear and concave if and only if SRf^H^ ^ 0. The approach for an

underestimate of (Px over R is to first obtain, respectively, an underestimate for (Px over each CRj

where 9x is nonlinear and concave, and then combine these underestimates together with

underestimate Izj - Z2 I to form a general one.

A

Figure 4.23 Comer Points and Convex Hulls
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Now, we construct an underestimate of over a nonempty CRj. Let z^e, z^, z^e, and zsw

be the four comer points of CRj as shown in Figure 4 .23 . Let C^^ be the convex hull of zne, zn^,

and zsw, and Cj2 the convex hull of z”^, z^e, and z*'*'. Let /jiCZ], Z2) be the linear plane in

defined by points (z^e, (Px(zne)), (z^w, 9^(2^), and (z*'*', (p^(zsw)), and let l\2{ixh ^xz) linear

plane defined by (z^e, 9^(zne)), (use, ^^^(zse)), and (zsw, (p^(zsw)). Finally, define the PLC function

p/j(z,, Z2) = max{/ji(Zi, Z2), /i2(zi, Z2)}.

Now we show that, over CRj, p/j is a nontrivially better underestimate of cp^ than Izj -Z2I.

Lemma 4.3 . p/jfzi, Z2) = /ii(z,, Z2), V (zj, Z2) e Q, andp/jfzj, Z2) = Z2), V (zp Z2) e C^-

Proof. See Appendix B.4.Theorem 4.1 . Let KRj be the closure of SRj. For any (zj, Z2) e CRj,

a) Izj - Z2I ^ pfjfzi, Z2) with equality holding if and only if (zj, Z2) is a boundary point of KRj, or

CRj = KR;;

b) p/i(z„ Z2) < <p^(z,, Z2).

Proof. From Lemma 4 .3 , p/jCZ], Z2) = ln(z\, z^ for any (zj, Z2) 6 Cji- The function
/ji

over C^y is

a trituigle in E3 above the convex function Izj - Z2I and below the concave function <Px(2i> ^2)-

Thus, we have Izj - Z2I < pl\\{zx, z^) ^ (Px(zi> (^i* ^z) ^ Qi- Similarly, Izj - Z2I ^

p/j(zi, Z2) ^ tPxC^i’ 2z)» for any (zj, Z2) € C12. Since CjiUCi2 = CRj, we have the theorem. |

Lemma 4 .4 . The underestimate function p/,(zj, Z2) defined on CRj is not greater than Izj - Z2I

outside of CR; (i.e. over region R - CR,).

Proof. See Appendix B.4 .

Now, define

p/(zi, Z2) = max{lzi - Z2I, max{p/j(zi, Z2) I for every CRj ^ 0 }}-

Theorem 4 .2 . p/fzj, Z2) is an underestimate for cPxC^i’ ^z) o''®*'

Proof. Let (zj, Z2) be an arbitrary point in R. We have either (zj, Z2) e CR; for some i or (zj, Z2)

€ CRj for all i. For the first case, from Theorem 4 . 1 a, we have Izj - Z2I ^ pl\izi, Z2). From

Lemma 4 .4 , we have pl^iz^, < Izj - Z2I for any other h. Thus, p/(zi, Z2) = p/i(zi, Z2). From

Theorem 4 . 1 b, we have pl\(z^, Z2) ^ <Px(^i> ^z)- P®’'’ second case, from Lemma 4 .4 , we have

pl{(zx, Z2) ^ Izi - Z2I for any i. Thus, pl{z\, Z2) = Izj - Z2I ^ 9x(^i' ^2)- |
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Note also that p/(.) will be itself if the latter is linear over R.

The following procedure summarizes the steps of constructing an improved underestimate

for px(u^j, u^) over Xj^.

Procedure 4.3 . (Constructing p^(. , .)“)

If (a) of Observation 4.9 is true, then p^(. ,
.)“ = p/(. , .); otherwise, let p^(. , .)“ = r^C- , .);

4.5.5. The Lower Bounding Problems

Now, we consider lower bounding problems for a subproblem

P': Minimize {f(U) = c(D(U)) I U € SnNg"}.

With the PLC distance underestimates, an obvious lower bounding problem for P' is

Pl': Minimize {f(X)“ = c(..., d(vj, Uj)“, ..., d(Uj, Uj^)" ...) I U € S}, where d(v;, Uj)“ = S^Cv^j, u^j)"

+ 5y(Vyj, Uyj)“ and d(Uj, u^)~ = Px(Uxj> i^xk)~ + Py(Uyj, Uyk)"- Problem Pl' can be transformed into a

convex programing problem with linear constraints, since function c is convex. As in Section

4.4, we can further obtain a LP (Linear Program) lower bounding problem for F with

subgradients evaluated at some extreme points of SnNg".

In the remainder of this section, we will focus on two multifacility problems - the

multimedian problem and the multicenter problem, since their respective objective function

structures enable us to develop better lower bounding problems.

4.5.6. The Multimedian Lower Bounding Problems

The multimedian problem is P: Minimize {f(U) I UeNg"}, where f(U) = Xjfj(Uj) + InnIU)

with fj(Uj) = LiWijd(Vj, Uj) and fNN(U) = Ij<k Vjijd(Uj, Ul). a subproblem is F: Minimize {f(U) I

U e SoNg"}, where S = S^xSy with and Sy some polytopes in E" defined in Subsection 4.5.2.

From Observations 4.6 and 4.7, we express P' as Minimize {fx(U) + fy(U) I U€ SnNg"}, where

fx(^) ~ ^xj) ^j<k'^jkPx(^Xj» ^Xk) fy(U) — 2iijWjj5y(Vyj, Uyj) + Xj<lcVj|jPy(Uyj, UyJj).

Construct a lower bounding problem Pl' for F as the following. For the given S, let Ij be

the set of vertex indices such that for each i e L, Vj and uj satisfy at least one of the conditions

(for a unique form) in Observation 4.9. In other words, for each i e Ij, 6x(Vjj, u^j) over SnNg" has
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exactly one of the forms given in the definition of 5^. Let Ij' = I - Ij, where I is the set of all the

vertex indices.

Observation 4.11 . For each i € Ij, 6x(Vjjj, u^j) is a function of u^j only.

Proof . For any i e Ij, either 6x(Vxi, u^j) = (f)(UxjlVxi, vlf^], vl[i]') or 5^(Vj^i, u^j) = Iv^ - u^jl for all the

U e S (^Ng". Thus, the conclusion is true. |

Now, let fxj(Uxj)" = S{Wij6x(v^i, Ujj)) I i € Ij} + I{wylv^i - u^jlli e Ij'} and let fy/Uyj)- be

smilarly defined. We have a lower bonding problem

P": Minimize Ijfxj(Uxj)" + Ij<kPx(Uxj> Uxk)~ + + 5^j<kPy(Uyj, Uy^)".

Ux e Sx, Uy G Sy

It is clear that problem Pl' can be decomposed into two independent problems

Px": Minimize Ljfxj(Uxj)” 21j<kPx(Uxj> ^xk)~ Py" • Minimize Zjfyj(Uyj) + Xj<kPy(Uyj. Uy^) .

Ux e Sx, Uy G Sy,

We can find linear programming lower bounding problems for P^" and Py”. Here, we only

construct the former, as the latter is totally parallel.

Note that since 63^(Vxi, Uxj) and IVxj - u^jl are piecewise linear, fxj(Uxj)” is piecewise linear

over [lb„ rb:]. It can be shown that fxj(Uxj)~ has at most m break-points in [Ibj, rb^. Thus, we can

use the procedure given in Appendix B.3 to construct its PLC supporting plane over [Iby rb-^. Let

p/jj denote this PLC supporting plane. We then have a linear program lower bounding problem

Pxl": Minimize Sj P^xj(*^xj) + 2^j<kPx(Uxj> Uxk)“- Let PyL" denote the corresponding part for Py".

Ux ^ s^

t • • • • • • • 1

i • • • • • • • •

Figure 4.24 An Example Grid Network
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Example 4.17 . Consider a 3 new facility instance of P on the network G in Figure 4.24. The

network has identical edge lengths of 1 . The vertices are numbered from 1 to 20 counter -

clockwise starting from the lower left comer. The weights are given below,

Wj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 52 1461 23 120461 4426 1 1 v,j=10222272561441209242278 v,3=103321232424525552422 1 0 V23=10

A subproblem of P' has U restricted to S = x Sy where = {(u^i, u^2> I 0 < u^i ^ 4, 0 < u^2

< 8, 0 < u^3 < 8} and Sy = {(Uyj, Uy2, Uy3) I Uyi = 0, Uy2 = 2, 0 < Uy3 < 2}. In words, new facility 1

is restricted to the left half of the bottom horizontal grid line of G, new facility 2 is restricted to

the top horizontal grid line, and new facility 3 is unrestricted. For this subproblem, we have

Ii = I2 = I = (1, ..., 20}, and I3 = 0,

P^xi(Uxi) = 5.5u^i + 209, p/x2(Ux2) = 9.25Ux2 + 215,

p/x3(Ux3) = max{—48Ux3 + 274, -40Ux3 ^66, -34Ux3 + 254, -22Ux3 + 218,

-12Ux3 + 178, 2Ux3
+ 108, 20Ux3, 24Ux3 - 28}

PxKi- = max{u^i, Ux2 - Uxi }, PxKi, Ux3)" = lUxi - Ux3l, and

Px(Ux2- Ux3)“ = IUx2 - Uxsl.

Let fxj(Uxj)' be the function obtained by replacing every function 6x(Vxj, Uxj) in fxj(Uxj) with

6x(Vxi, Uxj)~; hxj(Uxj) be the function obtained by replacing every 6x(Vxj, Uxj) with IVxj - Uxjl. The

graphs of fxj( ), fxj( )',
p/xj( ), and hxj( ) over [Iby rb-Xj = 1, 2, are shown in Figures 4.25(a) and

(b), as solid lines, dotted lines, dashed lines, and the dash-dot lines, respectively. Since U3 is

unrestricted, every 5x(Vxi, Ux3)~ = IVxj - UX3I and I3' = I - I3 = I. Thus, fx3( ) = P^xsC-) = hx3(.).

Problem Pxl" is a LP problem with 5 variables and 14 constraints. Lower bounding problem PyL"

can be constructed similarly. Since, in S, Uyj and Uy2 are fixed and Uy3 is unrestricted, we have

PyL": Minimize ZiWj3lVyj - Uy3l + C, where C = ZiWjjVyj + ZiWj2lVyj - 21. The following Table 4.3

summarizes the minimal objective values of various problems (In the table, P„’ and P,y' are the

rectilinear lower bounding problems for Px' and Py’ respectively).

Table 4.3 The Objective Values

Problems F Pxl" Prx’ Pyt" Pry'

Obj. Values 922 635 510 224 224
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Figure 4.25 The Graphs of Various Functions

From Table 4.3, using lower bounding problems Pjjl" and PyL" produces a lower bound 859

which is significantly larger than the lower bound value 734 produced by lower bounding

problem P^ - the rectilinear lower bounding problem.

As for the size of Pxl each p/xj(Uxj) is the maximum of at most m linear functions. This in

turn generates at most m constraints and one additional variable (the upper bounding variable for

p/jj(Uxj)); each px(Uxj> “xk)~ is the maximum of at most 2 linear functions which in turn generates

at most 2 constraints and an additional variable. As for the constraints for Sx, not counting the

lower and upper bounds for location variables, there are at most n(n+l)/2 two-variable

constraints, each for a distinct location variable pair. Thus, Pxl " has at most n+n+(n+l)n/2

variables and mn+3(n+l)n/2 constraints. On average, this figure is much smaller since each

is generally the maximum of a few linear functions and the constraints for S have few two-

variable constraints. Generally, the number of constraints in Pxl " is much larger than the number

of variables in Pxl so that it is advantageous to solve the dual problem. Another way to reduce

the size of Pxl" is to remove those linear functions in the PLC underestimates which do not affect

the function's lower bounding quality significantly. For example, a heuristic to remove linear

functions in a PLC function p/xj( ) is the following: let [a(,, bj,] be the maximal interval such that

linear function /xjh(Uxj) = P^xj(*^xj) for any Uxj e [aj, bj]; If (b^ - a^) < a and l/xjh(ah) - /xjh(bh)' ^ P
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for some pre-specified values a and P, then we remove /xjh( )- We leave the topic of how to solve

P^" efficiently to future study.

4.5.7. The Multicenter Lower Bounding Problems

The multicenter problem is P: Minimize (f(U) I U e N-"}, where f(U) = max{ max{fj(Uj), j

= 1, n}, fNN(U) } I U e Ng"} with fj(Uj) = max{Wijd(Vj, uj), i = 1, m}, and fNN(U) =

max{ Vj|jd(Uj, Ui^), j < k}. A subproblem is P': Minimize (f(U) I U € SnNg"}, where S = S^xSy

with Sj and Sy some polytopes defined as in Subsection 4.5.2. Unlike the multimedian problem,

we cannot decompose P' into two independent problems, except some special cases. In the

following, we first introduce a lower bounding problem for F and then discuss some

preprocessing procedures for reducing the size of the lower bounding problem.

4.5.7. 1. The Lower Bounding Problem

First of all, we see that each fj(u:) can be regarded as the objective function of a 1 -Center

problem on Ng. Let 6^*= denote the set of bottleneck points on Ng with respect to fj(Uj).

Observation 4.12 . On each grid line, fj(u:) has at most 2m2(m+l) bottleneck points.

Proof. Suppose U: is fixed to a horizontal grid line, so that Uyj is a constant, say, c, and fj(Uj) is the

maximum of functions u^;) + Cjj, i = 1, ..., m, where Cy = IVyj - cl. Since Uyj is fixed, from

Observation 4.9, we know that either S^Cv^j, u^j) = (t>(u^j Iv^, vl[jj, vl^j') or 5^(v^, u^j) = Iv^j - u^jl,

so that 6j(Vjjj, Ujjj) consists of at most 4 linear functions. Thus, we can decompose the grid line

into at most 4m intervals in each of which every 6x(v^j, u^j) is linear. In each such interval, there

are at most m(m-t-l)/2 bottleneck points. Therefore, there are at most 2m2(m-i-l) bottleneck points

on this grid line. The above analysis is true for any grid line. Thus, the observation is true. |

For the given S, let { J^, Jy, J;,} be a partition of the new facility index set, with (Jy) the set

of those J's such that Uyj (u^j) is fixed (at a grid line coordinate), and the set of the rest of

location variable indices. We can express P' as

F: Minimize max{ max{fi(u^i), j e J^^}, max{fj(Uyj), j e Jy}, max{f:(Uj), j e JJ, fsi^U)}.
U 6 SnNg"
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From Observation 4.12, each j e is a piecewise linear function with at most 2m2(m+l)

break points (bottleneck points of fjCu^j)). Thus, we can apply the procedure in Appendix B.3 to

obtain the PLC supporting plane, denoted as ply for each such fj. Similarly, we can construct the

PLC supporting plane for each fj, j e Jy. Also note that fj(Uj), j e J;. is the maximum of functions

*^xj)
+ 5y(v^i, Uyj), and ftwCU) is the maximum of functions px(Uxj> + Py(“yj> ^^yk)-

\

thus obtain the following lower bounding problem for P':

Pi': Minimize
U€ S

max{ max{/7/j(Uxj), j e Jx), max{p/j(Uyj), j e Jy}, max{fj(uj)
, j e Jg}, f^CU) }»

where fj( )~,
j e J^, is obtained from fj( ) by replacing each 6x(. , .) and 5y(. , .) with the PLC

underestimates 6x(. , .)“ and 6y(. , .)“ as discussed in subsection 4.5.4. 1; and ff^X )” is obtained

from fNN( ) replacing each Px(. , .) and Py(. , .) with their PLC underestimate px(- ,
•)“ and

Py(. , .)“ as discussed in Subsection 4.5.4.2. Clearly, Pl' is a linear programming problem.

As for the size of Pl', note that each p/j is the maximum of at most 2m2(m+l) linear

functions which in turn generates at most 2m2(m+l) constraints, each 5x(Vxi, Uxj)” + 5y(Vyj, Uyj)“

in fj(Uj)~, j e Jg, generates at most 6 constraints, and each Px(Uxj> ^xk)~ Py(“yj» ^yk)~ ^nn( )~

generates at most 12 constraints. For the constraints of S, not counting the lower and upper

bounds for the location variables, each location variable pair is associated with at most one two-

variable constraint, so that there at most n(n+l)/2 constraints. Thus, Pl' has at most

2m2(m+l)(IJxl+IJyl) + 6mlJ<;l + 13n(n+l)/2 constraints; and at most 2n+l variables. In the worst-

case, Pl' has 2m2(m+l)n + 13n(n+l)/2 constraints and 2n+l variables. The average figure should

be much less than this worst-case figure, since each p/j is the maximum of only a few linear

functions, and S has few two-variable constraints.

4.5.7.2. Some Preprocessing Procedures

In case the size of Pl' is too large, some preprocessing is necessary. Since Pl' is to

minimize the maximum of a set of linear functions, there is great potential for reducing the size of

Pl' by eliminating those linear functions which never become binding or have an insignificant
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effect on the quality of P^'. In the following, we give some procedures which identify some of

these redundant linear functions. Let Rj = [Iby rb-^ ~>^[bby tbX

Preprocessing :

Step 1. Let fj“ = min{fj(Uj) luj € RjONg}, fj+ = max{fj(Uj) luj e RjnNg} for j
= 1 n.

Let LB = max{f[“, .... f„“}, and Jq = {j i fj"^ ^ LB}\

Step 2. Let = Jx-Jq. Jy = Jy-Jo» optimal Uj can be any point in SnNg”, for j € Jq)

For each j e let

ctjp“ = minimum {/p(Uxj) I Uxj e [Iby rb-^} and ajp+ = maximum {/p(Uxj) I Uxj € [Iby rb-^}

for each linear function /p(Uxj) in p/j(Uxj).

For each j e Jy, find and Ojq+ for each linear function /q(Uyj) in p/j(Uyj);

For each j € J^, let

Pij“ = minimum{Wij5x(Vxi, Uxj)~l/Z?j ^ Uxj ‘^rb-^ + minimum{Wjj5y(Vyi, Uyj)“l&^7j < Uyj < tbj] and

Pij'*'
= maximum! Wjj6x(Vxi, Uxj)“l/^j ^ Uxj ^rbj] + maximum! WjjSyfVyj, - ^yj - ^^j)-

For each j < k, let

Yjk" = minimum! Vjk(px(Uxj, Uxk)"KUxj- Uxk)eXjk) + minimum! Vj^pyfUyj, UykDKUxj, Uxk)€ Yj^},

Yjk-"
= maximum! Vjk(Px(Uxj, Uxk)">(Uxj, Uxk)eXjk) + maximum! VjkpyfUyj, UykDKUxj, Uxk)G Yjk};

Step 3. Let L~= !LB, cCjp- ... py- ... yjk“, ...}) andL+= !ajp+, ..., Py+, ..., Yjk+, ...}.

For any two elements a and b with a e L+ and b e L~, ifa<b then eliminate all the

linear functions associated with a from Pl'.

Now, we give some analysis for this preprocessing procedure.

First of all, it is not difficult to obtain these lower bounds and upper bounds in the

procedure. We can use the algorithm in Hakimi (1979) to find each ff in 0(iElnlog«). Since

each fj+ corresponds to an antipodal point of Ng, we can find fj+ in O(IEImlogm), where m comes

from the fact that in each edge there are at most m antipodal points. It is obvious that those a:p~,

Ojp+, Pij~, Pij+ can be easily obtained. To obtain Yjk”. one needs to solve two independent

problems of finding a minimum for a PLC function on a simple polytope. To obtain Yjk"^. one
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need to solve two independent problems of finding a maximum for a PLC function on a simple

polytope with known extreme points.

Secondly, we justify the elimination measures in the procedure. It is clear that for each j g

JO, the function fj(Uj) will not affect function f(U) for any solution Uj, so that we can eliminate the

entire function from f(U). Each element in L~ is a lower bound for Pl' and each element in L+ is

an upper bound for some function which is part of the objective of Pl'. Thus, if the upper bound

for a function is not greater than some lower bound for Pl', the function can be eliminated from

Pl'-

Finally, note that there is room to reduce further the size of Pl'. For example, if a linear

function in some p/j(.) has no significant effect on the quality of plL), that is, removing such

linear function does not decrease the minimum value of the p/j(.), then we can eliminate it from

Pl". Similar eliminations can be made to 5^(. , .) + 5y(. , .) and p^(. , .) + Py(. , .). We will leave

this to future study.

4.5.7.3. An Example

Consider a three new facility instance of P defined on the network G shown in Figure 4.24

and the weights given in Example 4.17. Let P' be a subproblem with U restricted to the S given

in Example 4.17 of subsection 4.5.6. For P', we have = 0, Jy = {1,2}, and = {3}.

Consequently, we have

p/i(u^i) = 48, p/2(^x2) = max{ 1.8144Ux2 + 48, 8u^2

f3(u3
)“ = max{ Wj3(IVji - u^3 l + IVyj - Uy3l) I i = 1, . . ., 20},

Px(Uxl- Ux2
)~ = max{u,i, U^2 “ “xl }. Py(Uyl, Uy2)- = 2

Px(^xl» ^xs) “
^^xl

~
^x3^> Py(t^yl> tly

3)
— Uy3

Px(^x2 » *^xs)
“

^^x2 “ ^x3^> Py(^y2 » ^y3) ~ ^ ~ ^y3

fr = 48; f2
" = 48, f3

" = 24 (so that LB = 48)

f,+ = 60; f2
+ = 72, f3

+ = 50;
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After preprocessing, the linear functions associated with ply(u^^) or f3(u3
)~ are completely

eliminated from Pl'. We get an equivalent lower bounding problem

Pl': minimze max{p/2(u^2). 10(Px(Uxi- ^x)~ + Py(Uyi, Uy2)~), 10(p,(u^i, u^2)~ + Py(Uyi’

10(Px(Ux2, U^3)- + py(Uy2, Uy
3
)-)}.

Problem P^’ is then transformed into a LP problem with 8 variables and 1 1 constraints. The

optimal objective value of P^' is 48 which is also the optimal objective value of F.

4.6 Summary

In this chapter, we showed that the n-fold Cartesian product of a cyclic network can be

partitioned into a finite number of subsets on each of which both types of distances are linear

functions. Based on this partition, we defined a special type of solution subset which is useful in

a branch and bound algorithm for a general multifacility problem with objective involving a

convex function of both types of distances. For the subproblems defined on such a solution

subset, we introduced some lower bounding techniques based on the piecewise linearity property

of the network distance. The lower bounding problems are all linearly constrained convex

programs, and they become linear in objective function for the multimedian and the multicenter

problems. For grid network multifacility problems, we defined similar solution subsets and lower

bounding problems. Compared with the problems on general cyclic networks, the grid network

specialization enables us to devise lower bounding problems with substantial improvements in

approximation quality.



CHAPTERS
SUMMARY

In this dissertation, we considered a class of network location problems - the multifacility

location problems, which are known to involve distances between pairs of facilities. We

developed theories and algorithms for the problems on some special cyclic networks. The results

are useful for both solving the problems considered in this dissertation and for further

understanding the properties of this class of location problems on cyclic networks.

In Chapter 2, we established a localization theory for the multimedian problem on

multiblock networks. This localization theory enables us to localize, in polynomial time, every

location variable to either a vertex or a block of the network. This result demonstrates the

potential of understanding the relation between network distances and network structures.

In Chapter 3, we developed a B&B algorithm for the multimedian problem on grid

networks. We gave a dominating relation which leads to a useful polynomially solvable

approximation - the intersection-restricted multimedian problem. We also give several search

heuristics. Numeric testing showed that the B&B algorithm can solve practical-size problems to

optimality. The test showed that the approximation problem was adequate in providing a near

optimal solution.

In Chapter 4, we developed some lower bounding techniques for a class of multifacility

location problems. For the general case when the underlying network is a general cyclic network,

we identified a partition of the solution space, defined the solution subsets £uid hence the

subproblems a B&B algorithm should use, and introduced some piecewise linear and convex

underestimates for the subproblem objectives. For the special case when the underlying network

129
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is a grid network, we made substantial improvement on the piecewise linear and convex

underestimates.

There are many open topics for this class of multifacility problems on cyclic networks.

Because of the presences of multiple local optimal solutions, the multifacility problem falls into

the category of global optimization. Partly due to the lack of simple (e.g. polygonal) solution

space representation, and partly due to the complexity of the objective functions, it is still an open

question of applying known global optimization solution techniques to the multifacility problem.

There may exist other forms of localization for other multifacility location problems on

multiblock networks. The solution partitioning and the lower bounding techniques given in

Chapter 4 maybe further generalized to grid networks under the presence of barriers of various

shapes. We need to develop a complete B&B algorithm for some multifacility problems, which

utilizes the methods proposed in Chapter 4. Since the multimedian problem is a relaxation of the

well-known quadratic assignment problem, it is interesting to apply and to modify the lower

bounding techniques for the latter problem to get better approximation algorithms for the former.

Finally, there is potential in developing B&B algorithm for multifacility problems, which utilizes

various known lower bounds and solution set partitioning strategies.

/



APPENDIX A
THE PROOFS IN CHAPTER 3

First, we establish some terminology and state some properties of the tree network

multimedian problem. Let P be a MMP on a tree network T with objective function f. Let J =

^ ^ ” ^ facility index set. Throughout this appendix, we will use some graphical

examples to illustrate ideas. These examples are indicated with parenthetical references (e.g.

(See Example Al)).

DgfinitiQP A3,l . An adiaggm mQvgmgnt is a triplet <(Vs, V(), s, X> denoting the process of

changing a solution X of P by moving some subset S c J of new facilities from their common

location at vertex to an adjacent vertex v^.

We see that for the given subset S and the vertex v^, solution X must be one of those which

has their new facilities involved in S located at vertex v^. Let D(S, Vj) = {X I Xi^ = Vj, k € S }

.

Lemma A3.5 below gives a sufficient condition for such a movement to decrease the objective

function value. In order to state Lemma A3.5, Lemma A3.1 and Lemma A3.2 give some simple

facts on how the objective value changes as a result of an adjacent movement. Lemma A3.3 and

Lemma A3.4 associate an adjacent movement with the optimality condition for the tree MMP.

PgfinitlQn A3,

2

. For a given vertex solution X to P, an edge (v^, v^) of T, and a subset S of J,

define a partition { Js(X), Jt(X)} of J - S over subtrees T^ and T, as Js(X) = (k e J - S, x,t e TJ

and J,(X) = {k 6 J - S, Xj^ e T(} (See Example Al).

Set Js(X) consists of the indices of those new facilities remaining in subtree T^ after

adjacent movement <(Vj, v,), S, X>. Likewise, J,(X) consists of the indices of those new facilities

which are m subtree T( before the movement. Note that the partition is defined with respect to

not only a solution X but also to a subset S of new facility indices and an edge of T.

131
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Lemma A3.1 . For a given vertex solution X of P, let X' be the solution obtained from X by an

adjacent movement <(Vj, V(), S, X>. Then, f(X') - f(X) = 5(X, S) d(Vj, v,), where

5(X, S) = Sj^s{ (KwylVi € TJ + Kvjklk e J,(X)}) - (Kw^jlVj e TJ + Ilvj^lk e Jt(X)}) }.

We see that 5(X, S) is a function defined with respect to an adjacent movement <(Vj, v,), S,

X>. For the given S, v^, and v,, it is a function of X with domain D(S, v^). In fact, 5(X, S) only

depends on the partition {JgfX), J,(X)} instead of the exact new facility locations. Therefore, for

any two solutions X and Y in D(S, v^), 5(Y, S) = 5(X, S) if Js(Y) = J^IX) and J,(Y) = J,(X).

Furthermore, if JjfX) is a proper subset of J^fY), then the weights Vji^'s with j e S and k e Js(Y) -

Js(X), which have positive coefficients in 5(Y, S), have negative coefficients in 5(X, S). Thus,

Lemma A3 .2 . Let S be a given subset of new facility indices. For any X and Y in D(S, Vj), if

Js(X) C Js(Y), then 6(X, S) < 5(Y, S).

Proof. From the above discussion, we know that

5(X, S) - 6(Y, S) = -2ljgsS{Vjk I k € Js(Y) - Js(X)} < 0. (See Example A2)

Now, we begin to identify when 5(X, S) < 0 given that we already know a vertex optimal

solution X* to P. Let {0^*, Oj*} be eui optimal partition of J such that Oj* (O,*) consists of the

indices of all the new facilities located in subtree Tg (T,) in X*. From Kolen's optimality

condition (1980) we have

Lemma A3.

3

. Let S be a subset of O,*. Let X be the solution in which every new facility k with

k either in Og* or in S located at vertex Vg (i.e. Xj^ = Vg if k e Og*uS) and in which every new

facility k with k in O,* - S located at vertex Vj (i.e. Xj^ = v, if k e O,* - S). Then, 5(X, S) < 0.

Proof. Let X' be the solution with every new facility located on Vg. From Kolen's optimality

condition of the tree multimedian problem, we know that 6(X', 0(*) = minimum { 5(X', L)1 L c J }

.

That is, Oj* is one of those new facility index subsets such that moving the new facilities in such a

subset from Vg to v, decreases the objective function the most. Since this adjacent movement cem

be accomplished by two adjacent movements one moving new facilities in S from Vg to and

the other moving new facilities in 0,*-S from Vg to Vj, we know that the objective function change
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5(X’, O,*) d(Vs, V,) for the first movement must be the sum of the objective function changes

5(X', Ot* - S) d(Vs, V() and 6(X, S) d(Vj, v,) for the latter two movements. Hence, 5(X', O,*) =

5(X', 0(* - S) + 5(X, S). Since 6(X', O,*) < 5(X', O,* - S) from its minimum property, we know

that 5(X, S) must be non-positive. |

Note that the partitions of J - S (over Tj and T,) for both solutions X and X* in Lemma

A3.3 are identical (i.e. J^fX) = J^fX*) and Jt(X) = Jt(X*)). Since, for any solution Y in D(S, v^), if

Jj(X) = Js(Y) and Jt(X) = J,(Y), then 6(X, S) = 5(Y, S), we have the following extension of

Lemma A3.3.

Lemma A3 .4 . Let S be a subset of new facility indices and X* a vertex-optimal solution to P.

For any solution X in D(S, v^), if J^fX) = J^fX*) and Jt(X) = Jt(X*), then 5(X, S) < 0.

The above lemma says that 5(X, S) is non-positive if there exists an optimal solution X* to

P such that X(^* and Xj^ belong to the same subtree for every k not in S. The following lemma

shows that the conditions in Lemma A3.4 can be relaxed due to the result in Lemma A3 .2.

Lemma A3.

5

. Let S be a given subset of new facility indices. For any X € D(S, vj, suppose

there exists a vertex optimal solution X* such that

cl) for every k e S, Xj^* e Tj;

c2) for every kg S, if Xj^* e T, then Xj^ € T,;

Then 6(X, S) < 0.

Proof. The difference between the conditions in this lemma and the conditions in Lemma A3 .4 is

that the conditions in Lemma A3.4 imply condition c.2 but not vice versa. In other words, for

any new facility index k with Xj^* in Tg, this lemma does not require Xj^ to be in Tg while Lemma

A3 .4 does. Thus, we know that Jg(X) c ~ conditions in Lemma

A3 .4 are satisfied so that 5(X, S) < 0. Otherwise, let Y be any solution in D(S, Vg) such that Jg(Y)

= Jg(X*) and J,(Y) = Jt(X*). From Lemma A3.4, we know that 5(Y, S) < 0. Since solutions X and

Y satisfy the conditions in Lemma A3.2 (i.e. Jg(X) c Js(Y)), therefore 6(X, S) < 6(Y, S) < 0. |

Now, we can prove Property 3.1.
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Property 3.1 . Let P be a MMP on a path network T. For an optimal solution X* and another

arbitrary solution X to P, any ^-combination X' of X and X* ordered like X* dominates X.

Proof. For ease of exposition, we assume that X', X, and X* are all vertex solutions (otherwise,

we introduce dummy vertices of zero weights). Let L = L(X I X*) and R = R(X I X’) be the sets

in Definition 3.2. Finally, let J be the new facility index set. We prove Property 3.1 by showing

that X' can be obtained from X by performing adjacent movements finitely many times. Each

movement moves a subset of new facilities an edge length closer to their corresponding locations

in X' without causing the objective function f to increase.

Now, we define the adjacent movements. The rth adjacent movement is a triplet <(Vj, Vj),

S, Xr> where X^ is the solution before the movement and (Vj, Vj) is the edge along which the

subset S of new facilities is moved. Subset S is either one of the following two sets:

Sl = {j I Xj’’ = minimum {xj^f
I
Xjjf < Xj^'} } and Sr = (j I Xj^ = maximum (xj^f

I
Xj.f > Xj^'} }.

(See Example A3 for Sl and Sr)

We see that set Sl contains the "leftmost" among those new facilities which are "to the left" of

their target locations in X'. Set Sr contains those "rightmost". If Sl and Sr are both empty, then

X*^ is X' so that the process stops. Otherwise, the process chooses either Sl or Sr as set S and

obtains X^+i by moving the new facilities in S from their common location in X^ to the adjacent

vertex closer to every X:' with j e S. We see that the moving process moves no facilities which

are already at their target locations in X' and each iteration moves at least one new facility an

edge closer to its target. Therefore, we can get X' by this moving process in finitely many steps.

What remains is to show that f(X^+i) - f(X0 < 0.

We only need to prove this inequality when S = Sl, since the proof is symmetric when S =

Sr. With (Vj, V,) the edge along which the new facilities in S are moved (from Vj to v,), let Tj and

T,, Vj 6 Tj and Vj e T{, be the subtree pair separated at edge (Vj, v^. From Lemma A3.1, we

know that ffX'^+i) - f(X0 = 5(X^, S) d(Vj, Vj). Hence, it is sufficient to show that 6(Xf, S) < 0.

Lemma A3.5 gives a set of sufficient conditions for 5(Xf, S) < 0. That is,

c.l. for every k e S, x^* > v, (i.e. Xj^* e Tj);
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C.2. for every kg S, if > v, (i.e. if e Tj) then Xj^f > Vp

Condition c.l is always true (Since for each k € S, Xj^f = Vj < Xj^*, thus, X|j* > v,. See

Example A3). Now, we consider what kind of new facility k can violate Condition c.2, i.e. x^* ^

V, but Xjjf < V,. First of all, k cannot be in R, since, with k in R, Xj^f is always to the right of target

location X|j' and hence is always to the right of Xj.*, so that if Xj^* > v, we must have Xj^f > v,. Thus,

such a k must be in L - S. Now, L - S can be partitioned into two sets according to the subtrees

to which the new facilities in L - S belong. Let (Lj, L,} denote this partition, Lj = {k,e L - SI Xjj"^

< Vj} and L, = {k € L - Six/ > v,} (See Example A4 for examples of Lg and Lj). We see that

Condition c.2 is violated only if Lg contains some new facilities which have their respective

optimal locations in X* located in subtree T,. The rest of the proof then is to show that 5(Xf, S) is

still nonpositive when such a case is true. We will prove this by first defining another solution Y

to P and an adjacent movement <(Va, v,,), S, Y> along some edge (v^, V|,) defined later. Then, we

will show that 5(Y, S) < 0. Finally, we will show that 6(X^ S) < 6(Y, S).

Solution Y is derived from X^ by reassigning the locations of some new facilities as

follows. Let V|, = min{X|j* I k € S} and let v^ be the adjacent vertex with v^ < V|,. Let Tg and Tj,

be the subtrees separated at edge (v^, Vj,). Then, Y is obtained from X'’ by relocating new

facilities in S to vertex v^, relocating each new facility k in L, to Xj^*, and letting the remaining

new facilities be at the same locations as in X*’. That is.

ifke S

if k € L, (See Example A5 for examples of Y, v^, and Vj,)

if k e RuLg.

Now we show that 5(Y, S) < 0 by showing that this adjacent movement corresponding to

6(Y, S) satisfies Condition c.l and c.2. That is,

c.l. for any k e S, x/ > v,,;

c.2. for any kg S, if Xj^* > Vj, then yj^
> vj,;

Since V(, = min{x/ I k e S}, c.l is true. To show c.2, we first observe that for any j e Lg, we

have Xj* < V(, (See Example A6 for an example showing Xj* < Vj, for every j e Lg) (The following

is the proof of this observation: Recall that in iteration r, set S consists of the "leftmost" among
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those new facilities, in L, which have not reached their respective target locations in X'. On the

other hand, from the definition of Lg we know that Xjf < Vg for every j in Lg so that every new

facility j in Lg is to the left of all the new facilities in S. This shows that each new facility j in Lg

must have reached its target location. That is, X;f = X;' for every j e Lg. Thus, for any j € Lg and

any k e S, we have X;' = Xj^ < Vj < Xj^', where the last inequality is derived from the fact that Xj^f =

Vg and Xjj' > Xj^f for every k e S. Since X' is ordered like X*, we have Xj* < Xj^*. Hence, Xj* < v^ =

min{X|j* Ike S}). Thus, if there is an index k such that k e S and Xj^* > v,,, then k must be in

RuL(. If k e R, then since Xi^f is always to the right of X|^* and since yj^
= Xj^^, we know that yj^

>

V),. If k e L,, then, since yj^
= x,j*, Xj^* > Vj, implies yi^

> Vj,. All together, we know that condition

C.2 is satisfied.

To conclude, we need to show SfX'', S) < 6(Y, S). From Lemma A3.1 we know that both

6(X^ S) and 5{Y, S) are sums of signed weights Iw;:, for every vertex V; and every new facility j

e S, and signed weights ±Vjij, for every new facility pair j € S, k g S. For each signed weight

swik (svjk) in 6(X^ S) there is a corresponding signed weight swjk' (svjk) in 5(Y, S), which is

either identical to swj^ (svjk) or differs by a sign. Thus, 5(Xf, S) < 5(Y, S) if we can show that for

each positively signed weight in 5(X*, S) the corresponding signed weight in 5(Y, S) remains

positively signed. First, we see that sw;: in 6(Xr, S) (sWy' in 6(Y, S)) is positively signed if and

only if Vj < Vg (vj < vj. Since Vg < v^, any vertex Vj with V; < Vg has Vj < v^, so that every

positively signed swy in 6(X'’, S) is also positively signed in 5(Y, S). Secondly, svj^ in 5(X^ S)

(svjk' in 5(Y, S)) is positively signed if tmd only if x/ < Vg (y^ ^ vJ. For every k such that x^*^ <

Vg, k ^ S, k is either in R or in Lg so that from the definition of Y, y^ = Xk*" ^ Vg < v^. This means

that every positively signed svjk in 6(Xf, S) is also positively signed in 5(Y, S). All together, we

know that every positively signed weight in 6(X^ S) remains positively signed in 5(Y, S). Hence,

5(X^ S) < 5(Y, S). Thus, the property is true. |
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Ex.Al (A Partition of J-S)

For the given solution X shown below and S = { 1, 2}, Vg = V2 , and = v^, we have JjCX) =

{3,4},Jt(X)={5. 6,7}.

Ex. A2. Let X and Y be the solutions shown below.

With S = {1, 2}. we have Js(X) = {3}, J,(X) = {4. 5. 6, 7}, J^fY) = {3, 4}, and Jf{) = {5, 6, 7}.

J3(X) £ J^CY),

6(X, S) = Xj6s[2^=i,2"'ij + ke Js(X)} - Zi=3 7Wjj - S{vijjlke vjy)

= Ijes[Wlj + W2j + W3j - Ii=3 7Wy - V4j
- Vjj - Vgj - V7j]

and
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5(Y. S) = Ij,s[ Ii=i,2Wij + 1{ Vkjlk€ J,(Y)} - Ii=3 7Wij - 1{ v,jlk€ J,(Y)]

= Ijes[Wij + W2j + W3J + V4j - Si=3 7Wjj - Vjj - V6j - V7j]

SO that 5(X, S) - 6(Y, S) = - 2(v4, + V42).

Ex. A3 . For the optimal solution X*, an intermediate solution X'', and the target solution X'
t

respectively given in Figure A. 1 (a), (b), and (c) below, we have =
{ 1 , 2 } and Sr= ( 5 }.

By selecting S = we then have Vg = V2 and Vj = V3.
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Figure A. 1 X*. Xf, and X'

Ex. A4 . With the S, X*, X', and X'’ given in Figure A.l, we have Lj = { 3 , 4 }, Lj = {6, 7 }, and R

= { 5 }. Condition c .2 is violated since for the new facility 4 in Lj, X4‘' < Vj but X4 > V(.

Ex. A5 (Constructing Solution Y)

For the X*", X*, X', S, Lg, L(, and R given in the above example, we see that v^, = vg so that

Vj = V5. From the rules of constructing Y, we have

yi = Va = V5. Y2 = Va = V5, since S = { 1 , 2 },

yg = Xg* = V7, y-j = X7* = V7, since Lj = {6, 7 }, and

y3 = X3*’ = vj, y4 = X4'' = V4, y5 = X5'’ = V5, since Lg = { 3 , 4 } and R = { 5 }.
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Figure A.2 Constructing Y

Thus, Y = (vj, V5, vj, Vj, V5, Vj, V7) as shown in Figure A.2. The adjacent movement is to move

new facilities in S = {1,2} from Vg to Vj,.
%

Ex. A6. (Condition c.2)

Consider the figures given in Ex. 3 and Ex. 5 and the subsets of indices given in Ex. A3 and

Ex. A4. Here = (3, 4}. We see that X4* < V|, = vg. This is because X4' < <= Xj^' for every k

in S = { 1, 2}, so that, since X' is ordered like X*, we have X4* < Xj^* for every k in S.
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THE PROOFS IN CHAPTER 4

Appendix B.O

Property 4.0 . If function c in P is a non-decreasing function, then there is an optimal solution to P

with every new facility located either on a vertex or in an edge which is a shortest path between

its two end points.

Proof. Call an edge which is not a shortest path between its two end-points a r-edge. It is suffi-

cient to show that for any given r-edge we can relocate, without increasing the objective value, all

the new facilities in its interior to some locations which are not in the interior of any r-edge.

Suppose that r-edge e = (u, w) contains Xj, . . ., x_ in e“, the set of interior points of e, and

Xj, ..., Xp are in the order t(Xj) < t(Xj^.j), j
= 1, ..., p-1. LetL(e) denote the length of e, P(u, ..., w)

a shortest path from u to w with length L. Let q be the largest index in {1, ..., p} such that r(Xq) <

L. Finally, let Y be the solution derived from X by relocating the new facilities in {1, ..., p} to

the points of path P such that d(yj, u) = r(Xj), for j
= 1, ..., q, and

yj
= w for j = q-Hl, ..., p. We

known that

L - d(u, yj)
< L(e) - r(Xj) and d(yj, u) < r(xj) for j e {1, ..., p}. (A.l)

It is thus sufficient to show that D(Y) < D(X), since c is non-decreasing, and since from X

to Y we relocate at least one new facility from an interior point of some r-edge to a location

which is not in the interior of any r-edge, so that by finite many such operations we can find a

solution with no new facility located in the interior of any r-edge.

First, the following two cases show that

d(z, yj) < d(z, Xj), for every j e { 1, ..., p}, and any z g e“ (A.2)

Case i. z is not in the interior of path P(u, . . ., w)

We know that d(z, yj)
= min{d(u, z) -i- d(u, yj), d(w, z) + L - d(u, yj)}. From (A.l),

we have d(z, yj)
< min{d(u, z) -i- r(Xj), d(w, z) + Up) - t(xj)} = d(z, Xj);

140
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Case ii. z is in the interior of path P(u, . . w)

Now, d(z, yj) = ld(u, z) - d(u, yj)! and d(z, Xj) = min{d(u, z) + t(Xj), L - d(u, z) + L(e) - r(Xj)}.

Case ii.a. d(u, yj)
< d(u, z)

In this case, d(z, yj)
= d(u, z) - d(u, yj) = d(u, z) - t(Xj). From the last equality, we have

d(z, yj)
< d(u, z) + r(Xj). Since d(u, z) < L, thus d(z, yj)

< L - r(Xj) < L - d(u, z) + L(e) -

r(xj). Therefore, d(z, yj)
< min{d(u, z) + r(Xj), L - d(u, z) + L(e) - r(Xj)} = d(z, Xj);

Case ii.b. d(u, yj) > d(u, z)

In this case, d(z, yj) = d(u, yj)
- d(u, z). Thus d(z, yj)

< r(xj) - d(u, z) < d(u, z) + r(xj)

and d(z, yj)
< L - d(u, z) < L - d(u, z) + L(e) - r(xj). Similar to Case ii.a, we have

d(z, yj)
< d(z, Xj);

Inequality (A.2) implies the following. First, since no Vj is in e“, thus

d(vj, yj) < d(vj, Xj) for every j € {1, ..., p} and for every i. (A.3)

Secondly, for every k such that Xj; e e~, d(yj, Xi^) < d(Xj, X|j). Thus, since yj^
= Xj^, we have

d(yj. Yk) = d(yj, Xk) < d(Xj, Xfc), j € { 1, ..., p}, k € {k I x^ « e"}. (A.4)

Now we show that

d(yj, y^)^d(Xj, Xk)foranyj, ke {1, ..., p}, j < k. (A.5)

We know that d(yj, yj^)
= d(u, yj^)

- d(u, yj) and d(Xj, Xj^) = min{r(xij) - r(Xj), r(Xj) + L + L(e) -

r(xij)}. If d(Xj, Xjj) = r(Xj) + L + L(e) - then, since a shortest path between Xj and X[j contains

the entire path P(u, . . ., w), it is obvious that d(yj, yj.) ^ d(Xj, Xj^). Now, with d(Xj, x^) = tfxjj)
-

r(Xj), we consider three cases:

Case iii. j > q and k > q

Now d(u, yj) = L and d(u, yj^)
= L so that d(yj, y^) = 0 < d(Xj, Xj^);

Case iv. j < q and k < q

Now, d(u, yj)
= r(Xj) and d(u, yi^)

= so that d(yj, y^) = t(x^) - r(Xj) = d(Xj, x^).

Case V. j ^ q and k > q

Now, d(u, yj)
= r(Xj) and d(u, yi^)

= L < so that d(yj, yj^)
= L - r(Xj) < d(Xj, Xj^).

All together, we know that (A.5) is true.
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The distances not considered so far are those d(Vj, y^'s for every j > p and d(yj, yi5
)'s for j, k

> p. But since they all involve location variables which have the same values in both X and Y

,

we know that

d(Vi, y:) = d(Vj, Xj), for every i and every j > p (A.6)

and

d(yj. yic)
= d(Xj, Xk), for every j, k > p (A.7)

Equalities (A.6), (A.7) and inequalities (A.l), ..., (A.4) cover all the distances in D( ), thus, we

know that D(Y) < D(X). |

Appendix B.l

Here, we give an algorithm for the problem of "Adding a Constraint" as defined in

Subsection 4.3.4. For the given S*^ c E“, let be the set of binding constraints for S®. Let M® be

an nxn indicator matrix such that element mj^® = 0 for all j
> k, mj^® = 1 if there is a half-plane

ajXj + a2Xk < b in C® and mj^® = 0 otherwise, for 1 < j < k < n. Let = min{ XjlX e S°} and let

PjO = max{XjlX € S°}, j
= 1, . . ., n. Without loss of generality, suppose every af and are

known. Hence,

S0= {X€ E"la;0 <xj<pj0j = 1 , n, and aiXj + a2Xk<b for each (j,k) such that m/= 1}.

For set S, let M, C, aj, and Pj be the counterparts of M°, C^, aj°, Pj° respectively. The algorithm

either constructs M, C, and every tt; and Pj, or concludes that S is empty. The algorithm starts

with M = M°. The addition of the new constraint may directly change the range of a variable, say

Xj (or 2 variables, say Xj and Xjj) associated with the constraint. If the range of Xj is changed, then

the non-zero entries, in M, in the same row and the same column corresponding to Xj are marked

negative. This is because every such entry corresponds to a two-variable constraint involving Xj

and another variable. When the range of Xj is changed, the range of the other variable may be

affected. The algorithm then proceeds to check and change the range of other variable. As a

result, more non-zero entries are marked negative. The algorithm repeats this process until no

entries in M are negative. The algorithm also detects and eliminate redundant constraints.
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An Algorithm for Constructing M :

Step 0: Let M = M°, C = C°, aj = a^, and Pj = pj°, j
= 1, . . n;

Step 1:

1.1: If the new constraint is a single-variable half plane Xp < b for some p, then

Begin

if b < dtp, then (S is empty) go to Step 3;

if b > pp then (Xp < b is redundant) go to Step 4;

Else

Begin

let Pp = b, m_i^ = -Irripkl for every k> p;

mjp = -Imjpl for every j < p;

go to Step 2;

End;

End;

1 .2: If the new constraint is a single half plane Xp > b for some p, then

Begin

if Pp < b, then (S is empty) go to Step 3;

if b < tXp then (Xp > b is redundant), go to Step 4;

Else

Begin

let Pp = b, nipij = -Irripijl for every k > p;

mjp = -Imjpi fcr every j < p;

go to Step 2;

End;

End;

1.3: If the new constraint is a two-variable half-plane //p^ = {(Xp, Xq) I ajXp + a2Xq < b}

for some p and q, then

let nipq = -1, C = C u {ajXp -i- a2Xq < b}, and go to Step 2;

Step 2:

If there are no negative elements in M, then go to Step 4;

Else

Begin

From M, choose arbitrarily an element, say mj,, which equals to -1 and let mjj = 1;

If the rectangle = {(Xg, x,) I Cg < Xg < Pg, otf < x, < PJ is contained in the

half-plane = {(Xg, x,) I ajXg -h a2X( < b}, then (//g, is redundant)

Begin

C=C-{//g,},
nig, = 0, and

go to the beginning of Step 2;

End;

If (“ 'I'st ^ //g,) = 0 then (S is empty) go to Step 3;

Else

Begin

ttg' = min{Xgl (Xg, x,) e Rg,}, Pg' = max{Xgl (Xg, x,) e Rg,},

a,' = min{x,l (Xg, x,) e Rg,}, P,'
= max{x,l (Xg, x,) e Rg,},

If [ttg’, Pg'] = [Og, Pg] and [a,', P,'] = [^, P,] then go to (the begin of) Step 2 (the range

of the two variables sne not changed in this iteration);

Else

Begin

If ttg < ttg' and/or Pg' < pg then

Begin
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let rtisk = -liHskl for every k > s,

mjs = -Inijsl for every j < s;

If a, < oc,' and/or Pt' < P, then

Begin

let nitij
= -ln%l for every k > t

nij, = -Inijtl for every j < t;

End;

Let = 1

;

Let tts = a;, ps = Ps', a, = a,’, and Pt= p/;

End;

End;

End
Go to the beginning of Step 2;

End;

Step 3: Mark that S is empty;

Step 4: Stop;

Example A4.1 . Consider identifying the set of non-redundant constraints for S which is derived

by adding new constraint X2 + X3 < 2 to S° = {(xj, X2, X3)l Xj + X2 ^ 3, Xj + X3 > 3, 0 < Xj < 3, 0 <

X2 ^ 3, 0 < X3 < 3 } . The initial state after Step 0 and 1 are

1 2 3 Oj° M 1 2 3
«i Pj

1 0 1 1 1 0 3 1 0 1 1 1 0 3

2 0 0 0 2 0 3 2 0 0 -1 2 0 3

3 0 0 0 3 0 3 3 0 0 0 3 0 3

There are three iterations in Step 2. The states ofM and ttj's, Pj's are listed below:

Iteration 1 (s = 2, t = 3) Iteration 2 (s = 1, t = 2)

M 1 2 3 Pi
M 1 2 3 «j Pj

1 0 -1 - 1 1 0 3 1 0 1 -1 1 0 3

2 0 0 1 2 0 2 2 0 0 1 2 0 2

3 0 0 0 3 0 2 3 0 0 0 3 0 2

Iteration 3 (s = 1 ,t = 3) Iteration 4 (s = l.t = 2)

M 1 2 3 «j Pj M 1 2 3 «j Pj

1 0 -1 1 1 1 3 1 0 1 1 1 1 3

2 0 0 1 2 0 2 2 0 0 1 2 0 2

3 0 0 0 3 0 2 3 0 0 0 3 0 2
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Appendix B .2

Now, we state a geometry property in E^. Property 4.1 is a special case of this property.

Again, let A(a, b, c) denote the convex hull in Ep spanned by three linearly independent points a,

b, and c in Ep. Let pj = (p^j, Pyj), i = 1 , . . ., 4 , be the four extreme points of a quadrilateral R in

space E2
, with pj and p3 (p2 and P4) diagonal to each other. For i = 1 , . . ., 4 , let Pj be a point in E^

such that Pj = (pj^j, Pyj, Zj) for some real number Z;. Let C be the convex hull spanned by points

Pj, ..., P4. Let /j(x, y), /2(x, y), /3(x, y), and mx, y) be the algebraic representation of the linear

planes containing A(P2, Pj, P4), A(Pi, P2, P3), A(P2, P3, P4), and A(Pj, P4, P3) respectively. Let

p/j(x, y) (p/2(x, y)) be the algebraic representation of the 2-piecewise linear surface 5(3 (524)

which consists of A(P2, Pj, P4) and A(P2, P3, P4) (AfPj, P2, P3) and A(Pi, P4, P3)).

Property A4.

1

. Either

(a) p/i(x, y) = max{/i(x, y), l^{x, y)}, and/or (b) p^x, y) = max{/2(x, y), /4(x, y)} }.

In particular, if Pj, ..., P4 are not in some linear plane, then exactly one of (a) and (b) is true.

Proof. Note that R = A(p2, Pi, p4)uA(p2, P3, P4) and /? = Afp,, P2, p3)uA(pi, P4, P3).

From the definition.

p/i(x, y) =
'

/i(x, y) if (x, y) e A(p2, Pi, P4)

and p/2(x, y)= ^

/2(x, y) if (x, y) e Afp,, p2, P3)

/3(x, y) if (x, y) € A(p2, P3, P4), /4(x, y) if (x, y) e A(pj, P4, P3).

If Pj, . . ., P4 are in a some linear plane, all plXx, y)'s and Jpq(x, y)'s are identical. In this case, the

conclusion is obviously true.

Now, suppose that Pj, . . ., P4 are not in the same linear plane. Then, the convex hull C of

Pj, . . ., P4 is a polytope in E^ consisting of four faces corresponding to the four triangles, or

equivalently, the surfaces of C consist of surfaces 5|3 and 524. The assumption that pj, . . ., P4 are

extreme points of a quadrilateral implies that (i) any three of the four points pj, . . ., P4 are linearly

independent; and (ii) any three of the four points Pj, ..., P4 are linearly independent; These two

conclusions further imply that C cannot have a pyramid shape. Convex hull C then only has two

other possible shapes which are demonstrated in Figure 4 . 14a and 4 . 14b. We see that for the first

case, S24 has a rooftop shape and ^13 has a v-shape; in the other case, ^24 has a v-shape and S13 has
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a rooftop shape. For the first case, /i(x, y) > y) for any (x, y) e A(p2, Pi, P4) cind /i(x, y) ^

/3(x, y) for any (x, y) g A(p2, P3, P4). Thus, p/,(x, y) = max{/i(x, y), y)} for this case. For

the second case, /2(x, y) ^ ^x, y) for any (x, y) e A(pi, p2, P3) and /2(x, y) < l^ix, y) for any (x, y)

e A(pi, P4, P3). Thus, p/2(x, y) = max{/2(x, y), /4(x, y)} for this case. |

We see that the quadrilateral R-.^ in Property 4.1 is an instance of the R here, and points Pj,

..., P4 in Property 4.1 are also the instances of the Pj, ..., P4 here, with Zj = d(pi). Thus, the case

stated in Property 4.1 is a special case of Property A4 . 1 .

Appendix B .3

Here, we give an algorithm for constructing the PLC y-dimension supporting plane for a set

of points in E^. Let the set of points be S = {(xj, yj), ..., (Xp, yp)}. We assume that Xj < Xj+j, for i

= 1 , . . ., p- 1 . Let S' be the subset of S such that for each (xj, yj) in S' there is point (xj,, yh) such

that yi, < yi and Xj, = Xj. Clearly, the PLC y-coordinate supporting plane for the points in S' is the

same as that for the points in S. Let PL denote the set of linear functions which constitute the

PLC y-dimension supporting plane for the points in S.

Algorithm :

Step 1 : LetM = S';

Step 2 : IfM is empty, then stop;

Otherwise, construct the linear y-dimension supporting plane /(x) for (X(i), y^)) and (X(2),

y(2)) where X(j) and X(2) are smallest and the second smallest x-coordinates in M.

Step 3 : If /(Xj) < y; for every (Xj, yj) in S', then (a) include /(x) in PL, (b) remove (X(j), y(j)) from

M; (c) Go to Step 2 ;

Otherwise, remove (X(2), y(2>) fromM and go to Step 2 ;

In the worst case, the algorithm constructs a linear supporting plane for every pair of points.

It takes 0(p) to examine whether every point is above a plane. The algorithm is 0(p
3
).
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Appendix B.4

In subsection 4.3.3, we proposed using a 2-piecewise linear function to

approximate Z2) over a given rectangle CRj, and then using a composite function pi to

approximate ^2) over a larger rectangular region R. To show the validity of these pl{s and

pi, we need to establish two lemmas. In this appendix we give the proofs for these two lemmas.

P2

Figure A4. 1 The Polytope inside a Cuboid

First, we emphasize that rectangle CRj is a subregion of the square region SR; where over

the latter the grid network distance <Px is also a 2-piecewise linear concave function. Over SR;,
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function (p^(zi, Z2) together with function Iz, - Z2I forms a polytope of four faces and four extreme

points. It can be visualized as a geometric object carved out of a cube, as shown in Figure A4.1.

Specifically, function (p^ over SR; consists of the two faces P1P2P3 and P2P3P4, and function

Izj - Z2I consists of the two faces P1P2P4 and P1P3P4.

Lemma 4.3 . pllz\, z-i) = /ii(zi, Z2), Vfzj, Z2) e C^x andp/jfzi, Z2) = /j2(Zi, Z2), V(zj, Z2) e

Proof. From Figure 4.12 and Figure A4.2, we see that /jj over Cj] is a two-dimensional right

triangle in with extreme points A = (zsw, (p^(zsw)), B = (zn^, cp^Cz^)). and C = (z^e, cp^fz^E)).

Similarly, /j2 over Cj2 is a two-dimensional right triangle in with extreme points A, C, and D =

(z*E, cp^(zSE)). Let A] and A2 denote these two triangles respectively and let s be the piecewise

linear surface that consists of these two triangles with their hypotenuses joined. That is, ifzj, z-^

= /ii(zi, Z2) if (z„ Z2) e Cii and ^(z,, Z2) = /i2(zi, Z2) if (zj, Z2) e Ca- If 5 is convex, then, since

and /,2 are the linear supporting planes of s, we will have /j2(zi, z-^) ^ 5(zi, Z2) = /u(zi, Z2) for any

(zi, Z2) e Cji and /ji(z,, Z2) < 5(zj, Z2) = /i2(zi, Z2) for any (zj, Z2) e Cj2. Thus, it is sufficient to

show that s is convex.

We prove this by considering all the possible positions of CRj inside SRj. Let Aj = {(zj, Z2)

e SR; I z, + Z2 < vlj + vlj.i } and A2 = {(zj, Z2) e SR; 1 z, + Z2 > vl; + vlj.j } (They are, respectively,

the lower left and upper right triangles of SRj). Rectangle CR; can have the following positions:

i. CRi c Ai;

ii. CRjCA2;

iii. zNE e A2 and the other three comer points are in Aj;

iv. zs'*' e Aj and the other three comer points are in A2;

V. zNE, zsE G A2 and znw, zs^ e Aj;

vi. zNE, zNw e A2 and zse, z«w e Aj;

Figures A4.2, A4.4, A4.5, and A4.7 give the positions of CRj for cases iii, ..., vi, respectively.

Since (p^ is symmetric in Aj and A2, we only need to consider cases i, iii, v, and vi. Before

discussing each individual case, we observe that, since ^2) ^2)) - 9x(^i» ^2)

(zj, Z2) € Cji (for any (zj, Z2) e Ci2), we have s(z,, Z2) ^ <Px(zi> ^2) fo*" ^2) ^



149

Case i . Since Aj and A2 are the same plane, s is linear.

Case iii . Consider Figure A4.2. Let /(. , .) be the two dimensional plane in defined by points

A, B, and D. Plane /(. , .) coincides with (p^ over Aj, so that /(Zi, Z2) ^ tPx(zi, Z2) S 5(zi, Z2) for

any (zj, Z2) e CRj. We can see from Figure A4.3 that, over domain CRj, 5(zi, Z2) consists of

faces ABC and ADC, and /(. , .) is the linear surface ABDE, where E = (zne, /(zne)). Surface s has

four extreme points A, B, C, and D, so that s shares three common extreme points A, B, and D

with linear surface ABDE. This situation can occur only when 5(zj, Z2) is convex (If s were

concave, then linear surface ABDE and surface s could not have shared extreme points B and D

at the same time, given that they share extreme point A.)

Figure A4.2 The Position of CR;: Case iii

E

Figure A4.3 The Piecewise Linear Surfaces: Case 1
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Figure A4.4 The Position of CRj: Case iv

Figure A4.5 The Position of CRj: Case v

Figure A4.6 The Piecewise Linear Surfaces: Case 2
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Z,

k

Figure A4.7 The Position of CR;: Case 4

Case V . Consider Figure A4.5. Again, let /(. , .) be the linear surface, in E^, defined by points A,

B, and D. Since (p^Cz^w) > and tPx(zsE) > (Pj^(zne), we have /(z^e) > (Px(z’^)- The three-

dimensional images of I and s over CR, are given in Figure A4.6, where I is the linear surface

ABDE and s consists of faces ABC and ACD. Since over CRj the 2-piecewise linear surface s is

below the linear surface I and they share three of the four extreme points, s must be convex.

Case vi . This case is similar to Case v. Consider Figure A4.7. Here, we use that fact that

9x(znw) > 1

lUU a 4.4 . p/i(zj, Z2) ^ Izi - Z2 I, for any (Zj, Z2) e R - CRj.

Proof. We prove this lemma by considering all possible positions of CR, in R.

Case 1 . CRj = R

In this case, R - CR, = 0.

Case 2 . CRj = SR,

From Theorem 4.1a, p/i(zj, Z2) = Izj - Z2 I for any (z,, Z2). Thus, the inequality is true.

Case 3 . CRj is the "southwest" comer of R.
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z

Figure A4.8 The Position of CRj inside R: For Case 3 of Lemma 4.4

VI

.

vl

vl

vl

vl

Figure A4.9 The Position of CRj inside R: For Case 4 of Lemma 4.4
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Figure A4.8 shows the position of CRj in R. For this case, the intersection of p/j and

Izj - Zjl is a right angled curve in passing through points (znw, (p^(zNw)), (zne, (p^(zne)), and

(zSE, (p^(zSE)). The projection of this curve on the (zj, Z2) plane separates CRj from R - CRj.

Since, from Theorem 4.1a, we know that Z2) is above Iz, - Z2 I over region CRj, it must be

below Izj - Z2 I over region R - CRj.

Ca.se 4 . CR; is the "northeast" comer of R

Figure A4.9 shows the position of CRj in R. In this case, the intersection of p/, and

Izj - Z2 I has its projection on (zj, Z2) plane as a right angled curve passing points z^^, zsw, and zse.

The rest of the proof is similar to that of Case 3. |

Appendix B.5 A Notation Glossary

G; A network (it usually refers to a cyclic network)

Ngi A grid network

m: number of vertices in G (Ng)

n: number of new facilities

G": The n-fold Cartesian product of G

Ng": The n-fold Cartesian product of Ng

PLC: Piecewise Linear and Convex

Notation for Multifacility Problems on a Cyclic Network G

X; Location variable vector (xj, ..., x„) € G"

P: Minimize (f(X) = c(D(X)) I X € G"}

P': A subproblem of P such that X € S with

S; A subset, call L-set, of G" (It is a set of solutions defined by a series of lower and upper

bounds for location variables and some inequalities each involving two location

variables.)

Q: a partition of G" such that on each of its elements D(X) is linear

CLrj]; A segment of some edge ey] with index jj] related to Xj
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Lrj]: A segment in some edge e|j] (it refers to a sub-segment in CLy])

VjP; An antipodal point of Vj on edge e- (a local maximum of distance d(Vj, x) over ep)

ey], e[jj]; Edges of G, to which Xj and Xj^ are restricted

U[p], W[pj: End points of ep

U[qj, W[qj: End points of Oq

U[q]P: the antipodal point of U[qj on edge ep

W[qjP: the antipodal point of Wjqj on edge ep

Ufpj'i: the antipodal point of Uy] on edge eq

W[p]'i; the antipodal point of Wyj on edge eq

For the case ep ^ eq, is line segment in epXeq where the type-II distance d(. , .)

reaches its maximum. The geometry of is a line segment running 135 degrees

inside rectangle epXeq

Ll; For the case ep = eq, is line segment in epXeq where the type-II distance d(., .)

reaches its minimum. The geometry of is a line segment running 45 degrees inside

rectangle CpXeq

f/pq! The hyperplane in epXeq which coincides with if p;tq, and coincides with Ll if p=q-

{H^, //pq"*"}: //pq“ and are the mutual-complement half-planes such that

CpXCq, and ^pq — ^pq

H\ The collection of for every edge cross product

H~\ The collection of ^fpq”

The collection of

L/?pqt A linear region in epXeq. It is a subset of either Hp" or obtained by adding

lower and/or upper bounds for X: and/or x^

^jk- For a given L-set S, /?jk - { (Xj, X(j) IX e S } (/?jk is a simple polytope of (xj, x^)

A quadrilateral in E^, which contains = Rj^^ if itself is a quadrilateral, and

Rjy. c if Ra is a pentagon)

Notation for Multifacility Problems on a Grid Network Ng
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U, Uj = (u^j, Uyj), Ui- = (u^, the location variables on Ng and their coordinates in

P: Minimize {f(X) = c(D(U)) I U e Ng"}

P': A subproblem of P such that U e SnNg" with

S = Sjj X Sy, where = {U^ I Ibj < u^j < rby (u^j, u^) e Xj^}

Sy = {Uy I bbj < Uyj < f^j , (Uyj, Uyfc) G Yj^}

Xjk: A simple polytope of

Yj^: A simple polytope of (Uyj, Uy|j)

v-int vertex: a non-intersection vertex on a vertical grid line (in the interior of a grid row)

h-int vertex: a non-intersection vertex on a horizontal grid line (in the interior of a grid col)

vlj, . . vL: x-coordinates of vertical grid lines

hlj, hL: y-coordinates of horizontal grid lines

vlrn, vlrn': x-coordinates of the vertical grid lines adjacent to vertex Vj

hlrj], hl[ji': y-coordinates of the horizontal grid lines adjacent to vertex Vj

A(a, b, c): A convex hull (a hyper-triangle) in Ep spanned by three linearly independent

points a, b, and c

(]): A function on E* which is used to describe part of a shortest distance function d(Vj, Uj)

())(zlaj, a2, a3) = maxjlz - ajl, 7t(zlaj, a2, a3)}, where

Jt(zlai, a2, a3) = minjai + z - 2a2, 2a3 - aj - z}

6y: functions on E^ such that d(Vj, Uj) = 5x(Vxj, u^j) + 5y(Vyj, Uyj)

5 (v • u ^

^xV^xi’ “xy

Iv • — u I

'^^xi ^xj'
if Vyj = Uy = hly. for some k

. (|)(Uxj I V^j, vl[ij, vl[i]’) o/w

5y(Vyi, Uyj) = ^

if v^j = u^ = vl|j for some k

(t>(Uyj I Vyi, hl[ij, hl[i]’) o/w
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(Px, (Pyi Functions on which are used to describe Px(Uxj> ^xk) Py(Uyj, Uy^) respectively

9x(zi. Z2) = max{lzi - Z2I, Zj), t^,p.i(z,, Zj)}

(Py(zi, Z2) = max{lzi - Z2I, ty,(z,, Z2), ty q.iCzi, Z2)}, where

Xxi(Zi, Z2) = min{zi +Z2
-vlj, 2vli^., - Zj - Z2}, i = 1 , .... p-1

Tyj(zi, Z2) = min{z, + Z2 - hlj, 2hli+i - Zj - Z2}, i = 1
,

q

-1

Px, Py: functions on E^xE^ such that d(u:, Uj^) = px(Uxj’ ^xk) + Py(Uyj. Uy^)

Px(Uxj. Uxk) =
^

lUxj - Uxfcl if Uyj = Uyij = hlj for some i

‘ 9x(Uxj. Uxk) o/w

py(Uyj, Uyk) = 1

|Uyj - Uyj-I if u^j = UjIj = vlj for some i

I 9y(Uyj, Uyk) O/W
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